
Using RVS to support multicore timing analysis

Document ID: MC-TN-016 Requirements zero-footprint RVS v2 Copyright © Rapita Systems Ltd. All rights reserved.INDT-v8

Introduction
The zero-footprint RVS tools RapiCoverZero, RapiTimeZero
and RapiTaskZero produce coverage, timing and scheduling
information for uninstrumented code running on target
devices.

By automatically producing results from branch traces
produced by the board on which software executes, these
tools reduce the effort needed to verify code coverage
and timing and scheduling behavior. Along with branch
traces produced by the system hardware, they only need
a disassembly of the application, meaning there is no need
for source code or instrumentation. In addition to reducing
target overheads, this lets you analyze third-party libraries
or other pieces of software for which you have no access
to source code.

This document explores requirements for compatibility
with zero-footprint tools, including requirements from the
board on which software executes, from branch traces by
those boards, and from data capture etc. This information
can be used to assess specific software execution
environments to see if they are likely to be compatible with
Rapita’s zero-footprint tools.

As an approximate minimum (you may be able to miss one
of these if you have other hardware doing a similar role):

•	 The target processor must have the ability to produce
execution or branch traces.

•	 The target board must be able to capture the trace
from the processor without gaps (either real-time or
with the ability to pause the processor whilst extraction
happens).

•	 The board must have a connection to attach debugger
hardware or an RTBx datalogger, and the debugger or
RTBx must be able to get the trace off-board without
gaps.

•	 Either the code under test must run without threads,
or the RTOS managing threads must expose enough
information about cores, process and thread IDs that
they can be identified in the trace. It may be necessary
to patch the RTOS to get this information.

Platform Support Packages
Rapita Systems Platform Support Packages (PSP)
convert native branch traces into traces understood by
zero-footprint RVS tools (standard traces).

There are many different execution environments for code
under test, both native on-hardware, and simulated in
software, and these produce traces of different formats,
which contain different events with varying levels of detail.
Each PSP is designed to convert a single specific style of
native trace to a standard trace format that can be analyzed
by zero-footprint RVS tools.

What must standard traces include and
how are they generated?
Standard traces produced by PSPs must include:

•	 A single branch trace per thread in the executing code

•	 Information and timestamps for the following events
for each branch trace:

•	 Thread activated

•	 Branch taken from address X to address Y

•	 Branch not taken at address X

•	 Thread suspended

PSPs convert native traces into standard traces understood
by zero-footprint RVS tools in 4 stages (Figure 1):

1.	 First, the branch trace produced by the hardware or
simulator (native trace) is captured and saved to a file.

2.	Second, this trace is parsed.

3.	Next, if necessary, certain elements in the trace
are expanded using information taken from the
disassembly of the executable (decompression of the
trace).

4.	 Finally, the trace is split into separate traces per
executing thread (demultiplexing of the trace).

Requirements for zero-footprint RVS analysis

Requirements from the board
For zero-footprint analysis to be possible, the board
on which software is executing must be capable and
configured to produce a branch trace.

Examples of boards capable of producing branch traces
include:

•	 Boards that have been developed to meet at least
Class 2 of the NexusTM message-based trace protocol

•	 ARM® boards including an ARM ETM component

•	 Custom boards developed to produce branch traces

Requirements from native branch
traces
For it to be possible to create a PSP that can convert a native
branch trace into a standard trace analyzable by zero-
footprint tools, the branch trace must contain information
from which a standard trace can be generated. For a list of
the elements standard traces need to have, see What must
standard traces include and how are they generated?

Things to look out for when assessing hardware, which
increase the likelihood that a PSP can be developed,
include:

•	 The hardware produces a log of the branches in the
executable code that were taken and not taken during
execution

•	 This log includes origin and destination addresses
through which the execution occurred

To investigate whether branch traces produced by
a specific hardware or simulator environment are
compatible with zero-footprint RVS tools, contact us at
support@rapitasystems.com.

Requirements when capturing traces
If the native trace originates from hardware, then it will
need to be extracted from that hardware. This may be
achieved using external devices including the following:

•	 A debugger – if a debugger is used to collect traces
for analysis, your hardware must include a trace port

that can connect to the debugger. Manufacturers
that produce debuggers compatible with zero-
footprint tracing include LauterbachTM (PowerDebug),
ARM (DSTREAM), iSYSTEM® (IC series) and Kyoto
Microcomputer Co., Ltd. (PARTNER-Jet2). Other
debuggers may be compatible with zero-footprint
tracing. The requirements for connection depend on
the hardware you are using. For example, if you’re using
an ARM ETM interface, you could connect a Lauterbach
debugger to it in any of the following ways:

•	 By using a 20-Pin Cortex® Debug and an ETM
Connector

•	 By using a 38-Pin ARM ETM Mictor Connector

•	 By using a Samtec® 40-Pin Connector

•	 By using a MIPI 34 or MIPI 60 Connector

For more information on the requirements to connect a
debugger to the board you are using, contact the debugger
manufacturer. For example, you can view requirements for
connection to Lauterbach debuggers on the Lauterbach
website’s chip selection page.

•	 A Rapita Systems RTBx data logger – RTBx data loggers
are capable of capturing branch traces. If this strategy
is used, however, the board must be configured to send
information to a port that the RTBx can read from. This
may be achieved, for example, by programming a free
FPGA on the board.

Regardless of which external device is being used to
capture traces, the device being used must be able to
capture the data from the target fast enough so that there
are no gaps or buffer overflows during data capture. If
there are overflows, zero-footprint RVS tools will attempt
to make sense of the remaining trace, but this may not be
possible if information on which branches have been taken
or not taken is missing from the trace. As the RTBx has a
high bandwidth, data capture rate tends not to be an issue
when using an RTBx.

For simulated execution, the simulator will usually be
modified to output the native trace directly to a file. Because
the trace is written directly to a file, there are no issues with
bandwidth.

Figure 1. The process by which native traces are transformed into branch traces usable for analysis by zero-footprint
RVS tools

rapitasystems.cominfo@rapitasystems.com +44 (0)1904 413945

Requirements for parsing
For Rapita Systems to be able to produce a PSP for new
hardware, the trace format produced by the hardware
must be documented, so that Rapita can develop a PSP
that converts it to the standard trace format.

Requirements for decompression
Because software execution tracing mechanisms must be
fast and not miss information, they often use optimizations
and provide only minimal details of what has happened.
The decompression stage expands on the information
available from the native trace by combining it with other
known information such as a disassembly of the executable.
It must be possible to expand on the information present
in the native trace to produce a standard trace containing
the following information:

•	 Thread activated

•	 Branch taken from address X to address Y

•	 Branch not taken at address X

•	 Thread suspended

For example, some platforms compress sequences of
“Branch taken” and “Branch not taken” events into a single
bit per decision, omitting the addresses involved. PSPs
must be able to expand these “TNT” events to add the origin
address (for branch not taken) or origin and target addresses
(for branch taken). PSPs must be able to unambiguously
determine these addresses, which is done for example
by nearby addresses in the trace and information from a
disassembly of the executable. As such, if decompression is
required, then the addresses surrounding the compressed
TNT events in the trace must correspond with the expected
addresses from the assembly.

Requirements for demultiplexing
For zero-footprint RVS tools to be able to analyze a multi-
threaded application, there must be a way of detecting the
context switch from one task to another so that the trace
can be successfully demultiplexed.

For this to be possible, the native trace must contain
enough information about interrupts, exceptions and
context switches between threads and the RTOS kernel
code so that the PSP can determine when each context
switch occurs and which thread has become active.

There are various ways to detect context switches
depending on the execution environment and information
available, so different PSPs often determine context
switches in different ways. Some hardware has a register

that contains the currently running thread ID, so PSPs for
these environments scan this register for demultiplexing.
Sometimes, the context switch routine is easily identifiable,
and PSPs for these environments may read unknown
jumps from the context switch routine as a context switch.

If there is not quite enough information to be sure of the
switch, or of the identity of the new task, then it may be
possible to patch the RTOS to output the information
required.

Requirements of the executable file
and disassembler
For zero-footprint RVS tools to be able to analyze the
executable file, a disassembler must be available to
disassemble the object code into a format that is analyzable
by zero-footprint tools. PSPs generally use some variant of
nm, objdump or similar software to disassemble object
code.

Arm® and Cortex® are registered trade marks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. iSYSTEM® is a registered trademark of iSystem AG für
Informatiksysteme. Nexus is a trade mark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. Lauterbach™ is a trade mark of Lauterbach Gmbh. Samtec® is a trade

mark of Samtec, Inc. registered in the US and elsewhere.

