
Safety through quality

INDT-v8 Copyright © Rapita Systems Ltd. All rights reserved.Document ID: MC-WP-011 DO-178C Verification v4

H A N D B O O K

Efficient verification through the DO-178C life cycle



page i | Efficient verification through the DO-178C life cycle

Contents
1. Introduction to DO-178C  1

 1.1 Design Assurance Levels (DALs)  2

 1.2 Objectives and activities  3

 1.3 Supplementary objectives and guidance  3

 1.4 Demonstrating compliance  4

2. Planning  6

 2.1 Thinking about verification early  7

 2.2 The Planning milestone (SOI#1)  7

3. Configuration management  8

 3.1 Control categories  8

 3.2 Baselines  9

 3.2 Problem reporting  10

4. Quality assurance  11

 4.1 SQA independence  12

 4.2 Initial SQA activities  12

 4.3 Ongoing SQA activities  12

 4.4 Conformity review  13

5. Development  14

 5.1 High-level requirements  14

     5.1.1 Your requirements should be verifiable  15

     5.1.2 The importance of requirements traceability  16

 5.2 Design  17

     5.2.1 Developing software architecture  17

     5.2.2 Developing low-level requirements  19

 5.3 Implementation  19

     5.3.1 Implementation decisions can affect verification efficiency 20

     5.3.2 It may pay to start verification early  22



Efficient verification through the DO-178C life cycle  | page ii  

      5.3.3 Using model-based design (DO-331)  23

     5.3.4 Using object-oriented programming and related techniques (DO-332) 23

  5.4 The Development milestone (SOI#2)  24

6. Verification  25

 6.1 Preparing for SOI#3  26

 6.2 Who does the testing?  26

 6.3 Testing on-host vs. on-target  26

 6.4 Manual vs. automated verification  28

 6.5 Tool qualification and DO-330  29

 6.6 Documenting verification results  29

 6.7 Multicore systems  30

 6.8 Verification of DO-178C software  31

     6.8.1 Checking compliance to coding standards  31

     6.8.2 Requirements-based functional testing  33

     6.8.3 Resource usage analysis  39

 6.9 Verification of the verification process  46

     6.9.1 Structural coverage analysis  46

     6.9.2 Data coupling and control coupling coverage analysis  55

 6.10 Verifying multicore systems (A(M)C 20-193/CAST-32A)  57

     6.10.1 Additional activities required by CAST-32A  58

     6.10.2 What’s in store for A(M)C 20-193?  59

     6.10.3 Complying with CAST-32A / A(M)C 20-193  60

 6.11 Qualifying verification tools (DO-330)  60

     6.11.1 Tool qualification levels  61

     6.11.2 Tool qualification for commercial tools  62

 6.12 The Verification milestone (SOI#3)  62

 6.13 The final run for score   63

7. The Certification milestone (SOI#4)  64

8. The authors  65



page 1 | Efficient verification through the DO-178C life cycle

1. Introduction to DO-178C

The safety assessment processes used in all functional 
safety domains rely on demonstrating that the probability of 
system failure that could cause harm is below an acceptable 
threshold. 

When a system is made up of mechanical and electronic components, for which the 
component failure rate is known, the probability of failure for the system can be calculated 
and achievement of the safety target can be demonstrated. For software, complex systems 
or electronic hardware, system failures can be caused by design errors (sometimes 
known as systematic failures) as well as component failures, but there is no agreed way 
of calculating the failure rate of these design errors. In the aerospace domain, the agreed 
approach for dealing with design errors is to implement design assurance processes that 
have specific activities to identify and eliminate design errors throughout the software 
development life cycle. 

DO-178 was originally developed in the late 1970s and released in 1982 to define a 
prescriptive set of design assurance processes for airborne software that focused 
on documentation and testing. In the 1980s, DO-178 was updated to DO-178A, which 
suggested different levels of activities dependent on the criticality of the software, but 
the process remained prescriptive. Released in 1992, DO-178B was a total re-write 
of DO-178 to move away from the prescriptive process approach and define a set of 
activities and associated objectives that a design assurance process must meet. This 
update allowed flexibility in the development approaches that could be followed, but 
also specified fundamental attributes that a design assurance process must have, which 
were derived from airworthiness regulations. These included, for example, demonstrating 
implementation of intended function, identifying potential unintended function, and 
verification of an integrated build running on the target hardware.



Efficient verification through the DO-178C life cycle  | page 2  

Advances in software engineering technologies and methodologies since the release of 
DO-178B made consistent application of the DO-178 objectives difficult. In 2012, DO-
178C was released, which clarified details and removed inconsistencies from DO-178B, 
and which also includes supplements that provide guidance for design assurance when 
specific technologies are used, supporting a more consistent approach to compliance 
for software developers using these technologies. DO-178C guidance also clarified some 
details within DO-178B so that the original intent could be better understood and more 
accurately met by developers.

1.1  Design Assurance Levels (DALs)
DO-178B introduced (and DO-178C continued to use) the fundamental concept of the 
Design Assurance Level (DAL), which defines the amount of rigor that should be applied 
by the design assurance process based on the contribution to Aircraft Safety. The higher 
the DAL, the more activities and objectives that must be performed and met as part of the 
Design Assurance process because of the more severe consequences to the aircraft should 
the software fail or malfunction. Design Assurance Level A (DAL-A) is the highest level of 
design assurance that can be applied to airborne software and is applied when failure or 
malfunction of the software could contribute to a catastrophic failure of the aircraft. The 
activities and objectives that must be met through the Design Assurance process gradually 
decrease with each level alphabetically until DAL-E, which has no objectives as there is no 
consequence to aircraft safety should such software fail or malfunction.

Figure 1 – Timeline of release of DO-178 guidance



page 3 | Efficient verification through the DO-178C life cycle

1.2  Objectives and activities
The recommendations given in DO-178 fall into two types:

• Objectives, which are process requirements that should be met in order to demonstrate 
compliance to regulations

• Activities, which are tasks that provide the means of meeting objectives

In total, DO-178C includes 71 objectives, 43 of which are related to verification. The number 
of these objectives that must be met for compliance reduces as the Design Assurance 
Level of the system reduces (Figure 2).  

1.3  Supplementary objectives and guidance
DO-178C introduced three technology supplements to provide an interpretation of 
the DO-178C activities and objectives in the context of using specific technologies. The 
three technologies are Model Based Development and Verification (DO-331), Object 
Oriented Technology and related technologies (DO-332), and Formal Methods (DO-333). 
Each supplement describes the technology, defines the scope of its use within airborne 
software, lists additional or alternative activities and objectives that must be met when 
the technology is used, and includes specific FAQs (Frequently Asked Questions) that 
clarify objectives and activities relating to the technology.

A further supplement was introduced in DO-178C, Software Tool Qualification 
Considerations (DO-330), which gives guidance on the qualification of tools used in 
software development and verification processes. This guidance can be applied to any 
tools, not just those used for software development or verification, for example systems 
design or hardware development tools, and acts more like a stand-alone guidance 
document than the other supplements mentioned.

Figure 2 – Number of objectives and verification objectives in DO-178C Design Assurance Levels  

DO-330 provides tool-

specific guidance for 

developing airborne 

and ground-based 

software. As DO-

330 can be used 

independently, it is 

not considered as a 

supplement to  

DO-178C and is 

therefore titled 

differently from  

DO-178C’s specialized 

technology 

supplements e.g. 

DO-331, DO-332 and 

DO-333.

DO-330



Efficient verification through the DO-178C life cycle  | page 4  

Many other documents support DO-178C by providing additional clarification or 
explanations that can help developers to correctly interpret the guidance and implement 
appropriate design assurance processes. The Supporting Information (DO-248C) 
supplementary document includes FAQs relating to DO-178C, and the document is 
commonly referred to by the title Frequently Asked Questions. In addition to the FAQs 
in DO-248C, the document provides the rationale for the activities and objectives 
listed in DO-178C and includes discussion papers that provide clarification on specific 
topics related to software development and verification. A series of documents 
produced by the Certification Authorities Software Team (CAST) since the release of  
DO-178B provided information on specific topics of concern to certification authorities in 
order to harmonize approaches to compliance. These topics have had a greater scope than 
just Software concerns, and much of the content in CAST documents has been implemented 
in guidance updates such as DO-178C, or formed the basis of authority publications, 
such as A(M)C1 20-193 to address the use of multicore processors in avionics and  
A(M)C 20-152A on the development of airborne electronics hardware. CAST has remained 
inactive since October 2016 and links to most previous CAST papers have been removed 
from the FAA’s website. The FAA plans to remove the link to CAST-32A after the publication  
of A(M)C 20-193.

1.4  Demonstrating compliance
The basic structure of a Design Assurance process consists of three components:

1. Planning

2. Development

3. Integral processes (Verification, Configuration Management, Quality Assurance, and 
Certification Liaison)

Figure 3 – Supplementary documents such as CAST-32A have provided additional 
clarification or explanations for DO-178C

1A(M)C refers to either EASA AMC (Acceptable Means of Compliance) or FAA AC (Advisory Circular) 

documents.

The Certification 

Authorities Software 

Team (CAST) is a team 

of software specialists 

from certification 

authorities in the 

United States, Europe 

and Canada. The 

team released a 

number of documents 

that provide 

supplementary 

compliance guidance 

since the release of 

DO-178B, but the 

team has remained 

inactive since October 

2016.

The CAST team



page 5 | Efficient verification through the DO-178C life cycle

Planning should occur first and this follows the basic design assurance principle that you 
say what you are going to do before you do it so you can ensure that what you plan to do 
will meet the required DO-178C objectives and provide evidence to demonstrate this.

The Development process comprises the engineering activities needed to incrementally 
understand and decompose the system requirements into a software design and 
implementation that can be executed.

The Integral processes cover the activities needed to ensure that the products of the 
Planning and Development processes meet their requirements and are well managed, 
and that the processes you follow match those you planned to follow. The Certification 
Liaison activities focus on ensuring that there are sufficient data and checkpoints for the 
certification authorities to be able to determine compliance and approve the software. 

The typical process for the certification authority to determine compliance is based on four 
Stage Of Involvement (SOI) reviews. These reviews are:

1. SOI#1 or Planning Review

2. SOI#2 or Development Review

3. SOI#3 or Verification Review

4. SOI#4 or Certification review

Each of these reviews focuses on an aspect of the process and evaluates the evidence 
that demonstrates compliance incrementally throughout the development life cycle. We 
discuss each of the SOIs in more detail later. Generally, certification authorities require 
that each SOI is passed before a project can proceed to the next SOI. SOIs thus mark key 
milestones in a DO-178C project.  

Figure 4 – DO-178C processes and stages of involvement



Efficient verification through the DO-178C life cycle  | page 6  

2. Planning

The development of a set of plans covering all components of the Design Assurance 
process is a cornerstone of DO-178C. As part of this activity, the following plans must be 
developed:

1. Plan for Software Aspects of Certification (PSAC): a description of the software 
you plan to develop, the hardware environment it will be used in, the design assurance 
processes you will follow, and how you will demonstrate compliance, including how 
you will verify your implemented code and any commercial tools you will use in your 
verification. This acts as the parent planning document.

2. Software Development Plan (SDP): a description of the software development 
processes and the software life cycle that is used to satisfy DO-178C objectives.

3. Software Verification Plan (SVP): a description of the verification processes 
(Reviews, Analyses and Tests) used to satisfy DO-178C objectives.

4. Software Configuration Management Plan (SCMP): a description of the methods 
and environment that will be used to configure all of the design data and compliance 
evidence needed to achieve DO-178C certification.

5. Software Quality Assurance Plan (SQAP): a description of the methods and 
associated records that will be used to ensure that DO-178C quality assurance 
objectives are satisfied.

 

Planning is a crucial part of DO-178C compliance and it sets the scene for your 
project’s activities and the efficiency of those activities in later stages. You can save 
effort in your DO-178C planning by using a set of template planning documents 
as a starting point.

TIP

The Plan for 

Software Aspects of 

Certification (PSAC) is 

especially important 

and is essentially a 

compliance contract 

between your 

specific project and 

your certification 

authority. It must 

explain all features of 

the software and the 

associated processes 

that are salient 

to demonstrating 

compliance to the 

objectives of DO-178C 

and any applicable 

supplements.

Importance of the 
PSAC



page 7 | Efficient verification through the DO-178C life cycle

For DALs C and higher, as well as producing the above planning documents, you will also 
need to establish and document the standards you will use for Requirements, Design, 
and Code, documenting the methods, rules, and tools you will use to ensure complete 
and consistent generation of these items in a way that will meet DO-178C and project 
objectives. It pays to put effort into writing your standards – having well thought out 
standards reduces the chance of incurring rework costs later due to issues that could be 
addressed through having better standards, such as producing unverifiable requirements.

2.1  Thinking about verification early

As you need to describe the processes and tools you are going to use for verification 
during the Planning stage of a DO-178C project, you’ll need to ensure that what you plan 
to do for your verification is feasible and efficient before you have designed any of your 
code, let alone implemented it. The earlier you invest in evaluating options for verification, 
the better. It pays to evaluate whether you will use manual processes or tools to satisfy 
each verification objective and evaluate the tools you intend to use while considering any 
tool qualification needs. Any changes to your verification processes after the completion 
of SOI#1 would require renegotiation of your compliance strategy with your certification 
authority, which could add add cost to and delay your project. 

2.2  The Planning milestone (SOI#1) 
When your plans are complete and have been reviewed and signed off internally, it will 
be time to take the first step in the compliance process by having the SOI#1 review 
with your certification authority. The SOI#1 review is typically a “desk” review performed 
by the authority, who will thoroughly review all plans and standards to ensure that all 
applicable objectives of DO-178C and any relevant supplements will be satisfied if the 
development proceeds as documented in your plans. This review will result in either a 
report documenting any observations or findings that must be resolved, or acceptance 
that your plans and standards are compliant. When your plans have been accepted, the 
next step is to follow them!

The earlier you begin to evaluate verification methods, the better. Knowing 
early on how you’re going to satisfy each verification objective, including which 
verification tools you’re going to use (if any), and how you’re going to qualify any 
such tools, will reduce the cost of your verification.

TIP

Creating plans 

and standards for 

a project working 

towards DO-178C 

compliance requires 

a lot of effort, but 

you can save effort 

by using a complete 

set of templates as a 

starting point. Some 

companies offer such 

templates for a fee.

Reducing planning 
costs



Efficient verification through the DO-178C life cycle  | page 8  

3. Configuration Management

Configuration Management, one of the Integral processes 
in DO-178C, is relevant throughout the DO-178C compliance 
process. 

The Configuration Managment process requires you to ensure that you have robust 
processes for tracking the various compliance artifacts you will produce, tracking changes 
between different versions of those artifacts, and ensuring that your compliance artifacts 
are stored appropriately such that they can be retrieved later (this is often requested during 
SOIs). These processes are set up during Planning by producing a Software Configuration 
Management Plan (see Planning on page 6) and are followed throughout the DO-178C life 
cycle.

3.1  Control categories
Configuration items that you track through configuration management fall into two 
Control Categories, which determine the level of control that must be applied to 
items in that category. DO-178C specifies which items must be treated as Control 
Category 1 or 2 items based on the project’s Design Assurance Level. Items treated as  
Control Category 1 (CC1) must undergo full problem reporting processes, and formal 
change review and release processes. Configuration items classified as Control Category 2 
(CC2) items do not need to undergo these more formal processes, but items in this category 
must still comply with configuration identification and traceability needs, be protected 
against unauthorized changes, and meet applicable data retention requirements.

A configuration item is 

a software component 

or item of software 

life cycle data that is 

treated as a unit for 

software configuration 

management 

purposes.

Configuration items



page 9 | Efficient verification through the DO-178C life cycle

3.2  Baselines
An important concept relating to Configuration Management is the baseline – a record 
of the state of specific compliance artifacts at a specific point in time. What counts as a 
baseline varies from project to project, but it always has the following characteristics:

• An artifact added to a baseline is immutable. The only way to work on it is to follow a 
formal change control process and create a new revision of the artifact, which you can 
then add to a later baseline. 

• An artifact may be developed informally before you add it to the baseline.

• The artifacts within one baseline must be consistent with one another.

Typically, you will create a baseline for each phase of your software life cycle. For example, 
once high-level requirements have passed reviews and quality assurance checks, and 
you are about to transition to the software design phase, you may create a baseline 
representing the entire set of high-level requirements, reviews, analyses, the QA records, 
and traceability to system level requirements.

If your development is organized into modules, you can create a baseline per module. For 
example, you might establish a design baseline for each of three modules independently. 
Your configuration index submitted for approval should identify the relevant baseline, or 
baselines, of the accompanying compliance data.

Figure 5 – Baseline progression



Efficient verification through the DO-178C life cycle  | page 10  

3.3  Problem reporting
DO-178C Control Category 1 items (see Control categories on page 8) are subject to a formal 
problem reporting process, which you will need to set up and implement. This process 
should capture how you plan to respond to problems identified for Control Category 1 items 
during your project, such as issues with implemented code not meeting requirements/
standards, or verification activities not yielding results needed to demonstrate DO-178C 
compliance. You will need to write your Problem reporting process into your Software 
Configuration Management Plan.

Problem reporting can be considered as the process of managing changes to your 
artifacts. Your Problem reporting process should involve details on the process you will 
follow, typically including the following areas:

• How change requests, problem reports, issue reports or similar are raised. Your 
process should define the problem to be addressed or the need to be met. It must 
identify the configuration item and version affected, and especially in the case of a 
feature request, may include some notes on the expected solution. 

• How you will triage requests to make sure that they adequately define scopes. How 
agreements are made on whether to proceed with a change, defer a change, or reject 
a change. Agreements to proceed with a change should capture specific resources 
and timescales. Such decisions are usually made by a Change Control Board.

• When changes are made, how you will update your documentation with details of the 
change, particularly identifying the configuration items and versions that resolve the 
issue or need.

• How you will close requests once all stakeholders agree that they are complete. This 
decision is also usually made by a Change Control Board. 

Software Quality Assurance personnel should be involved in problem reporting to provide 
independent evidence that problem reports are being evaluated and resolved according 
to the Software Configuration Management Plan. SQA must have the authority to ensure 
that the engineering team act on problem reports.

A Change Control 

Board is a team of 

development experts 

(often including 

software engineers, 

testing experts, etc.) 

and managers (e.g. 

Quality Assurance 

managers), who 

make decisions 

on implementing 

proposed changes to 

a project.

Change Control  
Boards



page 11 | Efficient verification through the DO-178C life cycle

Software Quality Assurance (SQA), one of the Integral 
processes of DO-178C, provides the evidence showing that 
a project complies with processes, standards and guidance 
throughout the development life cycle. Broadly, there are 
six areas of software quality focus throughout a project.

At the beginning of a project:

1. Checking that the PSAC and the associated plans and standards align with the 
objectives of DO-178C.

2. Creating the Software Quality Assurance Plan (SQAP).

3. Checking that software life cycle processes comply with approved plans and standards.

4. Establishing supplier oversight.

During the project:

5. Checking that software activity follows the software life cycle processes – in particular, 
checking that transition criteria between life cycle processes are satisfied.

At the end of the project: 

6. Conducting the conformity review of the software product.

These activities must be conducted whether software activities are internal to one 
organization or part of an integrator-supplier relationship. In the latter case, each 
organization that has further suppliers must coordinate SQA activities so that the 
integrator’s evidence includes evidence from their supplier’s SQA activities.

4. Quality assurance



Efficient verification through the DO-178C life cycle  | page 12  

4.1  SQA independence
According to DO-178C, a project’s SQA team must have the authority to ensure corrective 
action i.e. an organization must be arranged such that, if a software quality engineer 
discovers a problem, SQA cannot be overruled by some other part of the organization. 
This can be achieved both through processes (e.g. explicitly requiring SQA authorizations) 
and through the reporting structures within the organization (e.g. SQA should not report 
to engineering managers). SQA authorization or approval is typically needed for the data 
items (plans, standards, requirements, configuration index and so on) that form each 
baseline.

4.2  Initial SQA activities
Good software quality cannot be achieved as an afterthought. SQA should be involved in 
both defining plans and standards (see Planning on page 6) to make it as easy as possible 
to generate the evidence needed for SQA activities as well as checking through those 
plans and standards for alignment with DO-178C. When writing plans and standards, 
it makes sense to start with the end result you want to achieve – the software quality 
assurance records that you need for final submission – and work backwards to identify 
how you will generate each item. As well as informing the input into plans and standards, 
this should help produce checklists and identify supporting tools that you will use to help 
collect compliance evidence. You will typically end up planning to use a mix of tools and 
techniques and document this in the relevant planning documents.

SQA should be the primary authors of the Software Quality Assurance Plan  
(SQAP, see Planning on page 6), which should cover the initial, ongoing and conformity 
review activities that SQA will manage, as discussed here and below.

When supplier organizations are involved in your program, it is best to coordinate SQA 
activities between the organizations from the early stages of a project. For each SQA-
specific item in your own plans, you should coordinate how you will obtain that information 
from the supplier, in what form, and at which milestones. This can be especially challenging 
for witnessing and participation activities (see Ongoing SQA activities on page 12), where 
you may need to delegate some authority to the supplier organization and then audit the 
responses that you obtain.

4.3  Ongoing SQA activities
The SQA Plan should include a mix of activities that will be performed throughout the 
project. These activities will generate the SQA evidence you need to show that your planned 
DO-178C processes were followed throughout the software life cycle.



page 13 | Efficient verification through the DO-178C life cycle

These activities include:

• Independent assessment – activities in which SQA independently (see SQA 
independence on page 12) assesses various activities specified in your plans and/
or the outputs of those activities. Independent assessment can be applied to, for 
example, life cycle data, transition criteria, life cycle environment, SCM processes 
and records. Typical issues discovered through independent assessment activities 
include identifying software changes without corresponding requirements updates 
or identifying discrepancies in the versions of tools used by different parts of the 
engineering organization. It is sensible to build procedures, checklists and tools to 
support these activities, and consider what training your SQA team may need in 
independent assessment and auditing.

• Participation – activities in which SQA have a continuous active role. This can include, 
for example, participation in reviews, change control boards, and problem reporting 
(see Problem reporting on page 10). Software quality engineers would typically be 
present at some percentage of these meetings to help identify issues such as process 
deviations, missed checklist items, or confusing instructions. As well as generating 
software quality reports to explain attendance and identifying issues and corrective 
actions applied, another benefit of participation is to correct processes and update 
supporting materials as early as possible. This can help avoid the need for significant 
later rework to correct quality problems.

• Witnessing – this involves members of the SQA team witnessing activities such 
as testing and the build and load process. Witnessing can be in multiple forms, for 
example witnessing the original activity being performed, witnessing an engineer redo 
the activity, or independently performing the activity. Using a mix of these techniques 
will help to give a good spread between the efficiency of the checking process and the 
independence needed to find inconsistencies.

4.4  Conformity Review
The SQA team in a DO-178C project has the responsibility for conducting a 
conformity review. This review, typically performed as the final step going into SOI#4  
(see The Certification milestone (SOI#4) on page 64), provides documentation showing that 
the software life cycle is complete. Your conformity review report will summarize and  
cross-reference evidence that you collect throughout the software life cycle, showing that:

• Planned processes were followed and generated traceable, controlled life cycle data, 
with complete and consistent baselines, including any data relating to changes from a 
previous baseline.

• Deviations and open problem reports were reviewed and approved.

• Software test, build and load activities were performed from repeatable, well-defined 
instructions.



Efficient verification through the DO-178C life cycle  | page 14  

5. Development

After SOI#1, the next step is to develop your product. 
This involves writing requirements, designing software 
architecture and finally implementing the software itself.

5.1  High-level requirements
The first step in Development is to define the high-level requirements of your code. Later in 
Development, you will define low-level requirements. Developing high-level requirements 
involves refining the context of system requirements allocated to software and defining 
any software-specific requirements that do not map to system requirements as derived 
requirements. While defining both high and low-level requirements, you should ensure that 
you follow the processes you agreed to follow in your PSAC – your certification authority is 
likely to check that you have done so during future SOIs.



page 15 | Efficient verification through the DO-178C life cycle

 
5.1.1 Your requirements should be verifiable

It is important to ensure that the requirements you write can be tested using the verification 
methodology you said you were going to use in your PSAC. This is important for both high 
and low-level requirements. If you generate requirements that can’t be tested, you’ll have 
two options: rewrite your requirements or change your verification methodology (and 
renegotiate the changes with your certification authority). The cost of both options is high, 
so it’s best to ensure that your requirements are verifiable. 

Common causes of unverifiable requirements include: 

• Not including specific verifiable and quantitative acceptance criteria such as values or 
behaviors in requirements.

• Writing requirements that include implementation details without including enough 
detail on the behavior of a component to unambiguously define the aspects of its 
behavior that must be specified to support testing. An example of this is writing 
requirements for the behavior of a state machine without including information on 
all possible inputs and the outputs expected from different inputs. This information 
must be specified in requirements as it may not be possible to infer the behavior of a 
component during testing, depending on the level at which the testing occurs. 

Having a well thought out Requirements standard should help your project avoid 
generating unverifiable requirements and reduce rework costs.

 

Requirements development for DO-178C projects

Engineers across your team will typically collaborate on requirements 
authoring and review, using requirements authoring tools and revision control 
systems to keep everyone synchronized. Pay attention to how you will meet 
major integral process objectives:

• For configuration management, make sure that you have unique 
identification of each version of each requirement. You don’t need formal 
change control until you start later life cycle phases. For example, you can 
work informally on high-level requirements, discussing and amending as 
you go, but once you want to start the design work, you should create a 
baseline to store the reviewed and analyzed high-level requirements 
against which you perform the design work.

• Verification evidence at this level includes reviews and analyses of the 
consistency and completeness of the requirements.

• Quality assurance records from this stage can be generated by having SQA 
personnel involved in some of the requirements reviews, independently 
performing reviews and analyses, or having some proportion of the 
requirements re-reviewed or re-analyzed.



Efficient verification through the DO-178C life cycle  | page 16  

5.1.2 The importance of requirements traceability

Ensuring the correct management of traceability information (parent child relationships 
between requirements) is of paramount importance during the design assurance process. 
Aviation regulations dictate that airborne software must only implement Intended Aircraft 
Functionality. Traceability, and the validation of traceability links, is a key mechanism to 
ensure that only Intended Aircraft Functionality is implemented. The reason that DO-178C 
requires bi-directional traceability is that downstream traceability ensures that all Intended 
Aircraft Functionality is implemented, while upstream traceability ensures that all elements 
of the implementation exist to deliver Intended Aircraft Functionality. For this reason, 
traceability is a cornerstone of the SOI#2 and SOI#3 reviews.

Most projects working towards DO-178C compliance select to use a tool (either 
commercial or in-house) to manage requirements and generate traceability information. It 
is worth considering how well any tools you plan to use for verification interface with your 
requirements management tool. Some tools may offer features to import requirements 
information from your requirements management tool, thus helping you view your 
verification results in the context of your requirements. This makes it easier to map 
between your verification results and the requirements you’re verifying, likely saving time 
and effort during your verification process.

Requirements traceability is crucial in DO-178C projects. Selecting a method 
(often a tool) to help you manage traceability information and automatically 
trace between artifacts will not only help you maintain an efficient workflow, but 
also support your SOIs. Some verification tools, such as the Rapita Verification 
Suite, can interface with some requirements-traceability tools, and it is worth 
considering this when selecting both requirements management and verification 
tools, as this could improve your efficiency.

TIP

Figure 6 – Requirements traceability concept and dedicated requirements page in a RapiTest report



page 17 | Efficient verification through the DO-178C life cycle

5.2  Design
When your requirements are available, the next step is to design the architecture of your 
software and define its low-level requirements in order to define a system that can meet 
the high-level requirements you have identified. Design in DO-178C is the combination of 
architecture and low-level requirements. You will need to follow the design standards you 
said you would follow in your PSAC and provide evidence that you have done this through 
the SQA Integral process (see Quality assurance on page 11). Your certification authority is 
likely to check this evidence during future SOIs.

As software is designed, items that should have low-level requirements, but for which 
these requirements do not trace to high-level requirements, are often discovered. These 
requirements, known as derived requirements, can include requirements for things such 
as reusable libraries, scheduling behavior, or the numerical accuracy of the software. 
When considering bi-directional traceability, you must provide information to show where 
derived requirements come from. This could be a reference to the design process or 
a design standard, for example. Recording this information makes it easy to show that 
your software design is the product of a repeatable process. This type of traceability is 
also important for change impact analysis, as these decisions often affect more than one 
software component.

5.2.1 Developing software architecture

Software architecture defines the components that software will have, including the 
functionality that each component will achieve, and the relationships between components, 
specifically data flows and control flows. Your architectural decisions can have a significant 
impact on your project life cycle, not only for implementation but also for verification, 
particularly considering data coupling and control coupling.

Considering data coupling and control coupling

Decisions you make in your software architecture will impact the verification effort needed 
for DO-178C compliance. As verification requires much more effort than implementation, 
it makes sense to consider the impact your decisions will have and choose a strategy to 
reduce total effort.

Architectural decisions you make can affect the efficiency of data coupling and 
control coupling coverage analysis during your verification. To make this analysis 
easier, you may want to:

• Limit the number of data and control couples in your design.

• Clearly define how each of the data and control couples in your design should 
operate, including specifying mode information.

TIP



Efficient verification through the DO-178C life cycle  | page 18  

One way in which your design decisions impact verification is in the data coupling and control 
coupling of the interfaces that you plan to include in your implementation – to comply with  
DO-178C guidance at DALs C and above, you need to verify that you have exercised the 
data coupling and control coupling interfaces in the implementation (see Data coupling and 
control coupling coverage analysis on page 55), and your design decisions will affect the ease 
of this verification.

As you need to verify that you have tested coverage of every data and control couple in 
your software for DO-178C compliance (see Data and control coupling coverage analysis on 
page 55), your verification will be much easier if you include fewer coupled components in 
your design rather than more.

The way that you define the couplings in your design will also impact the ease of your 
verification. To make verification of the data and control coupling in your system efficient, 
you may want to put extra effort into defining the data and control coupling interfaces 
thoroughly in your design by including information that will make it easier to verify the 
coverage later. Sensible items to include in such definitions include:

• Specifying data flow between components with detail such as Boolean and enumerated 
signals, numerical ranges and precisions, rates of change, update rates and fault flags.

• Describing components in terms of modes. If two components only interact in a 
certain way when one or both are in a particular mode, it makes sense to add that 
mode information to the component definition(s). Mode information helps to reduce 
complexity by limiting the number of interactions you need to consider.

Figure 7 – Data coupling and control coupling illustration

Data coupling and 

control coupling occur 

between components 

of your code that 

are separate within 

your architecture, 

but through which 

data can be passed or 

control decisions can 

be affected:

Data coupling occurs 

when data can be 

passed from one 

component of the 

code to another. 

The relevant data, 

its source and its 

destination form a 

data couple.

Control coupling 
occurs when a 

statement (such as 

a decision) in one 

component of the 

software affects 

which other software 

component(s) will 

execute (e.g. by 

choosing whether 

to call into the 

component or 

instructing the 

scheduler to start a 

task that uses that 

component). The 

components in which 

the control decision is 

made and from which 

the control decision 

is affected form a 

control couple.

Data coupling and 
control coupling



page 19 | Efficient verification through the DO-178C life cycle

• Specifying the control flow in terms of when and how control passes into and out of 
each component, including error cases and exceptions.

• Where software components interact with hardware, specifying data and control 
interactions in the same way as for software-software interactions.

The more such information that your interface definitions include, the easier your 
verification will be.

5.2.2 Developing low-level requirements

After developing the software architecture, the next step is to develop low-level 
requirements. This involves specifying requirements for the functionality you have assigned 
to each component in your software architecture. While most low-level requirements will 
typically map to high-level requirements, some components may include functionality 
not identified in high-level requirements and thus require that you develop derived 
requirements (see Design on page 17).

As with high-level requirements, low-level requirements must be developed according to 
your plans and requirements standards, and your requirements need to be both verifiable 
(see Your requirements should be verifiable on page 15) and traceable (see The importance 
of requirements traceability on page 16). When considering verifiability, you should consider 
how you will test the components in your software architecture, and if it looks like testing 
could be difficult (e.g. if it looks like testing will require a large number of mocks or stubs or 
a dependency injection approach), you may want to rethink your architecture.

Depending on your implementation decisions later on, you may need to develop new 
low-level requirements that do not trace to high-level software requirements, known as 
derived requirements.

5.3  Implementation
When your requirements and design are ready, the next step will be to implement your 
product in code. This is comparatively only a small part of the overall compliance process, 
usually taking 5% or less of overall effort.

As in every stage, you will need to ensure that your implementation follows the processes 
and standards you said you would follow in your PSAC and provide evidence that you 
have done this through the SQA Integral process (see Quality assurance on page 11). Your 
certification authority is likely to request evidence demonstrating that you have done so 
in future SOIs.



Efficient verification through the DO-178C life cycle  | page 20  

5.3.1 Implementation decisions can affect verification efficiency

The decisions you make on how to implement your product can have major effects on 
your verification later on. These can make your verification much easier or much more 
difficult, and as a result cause your project to either run smoothly or incur delays. As 
verification takes much more effort than implementation, it’s worth considering the effects 
your decisions will have and making decisions that will reduce your verification effort. Here 
are a few things you may want to consider:

• Choice of programming language(s) –  if you’re using any commercial tools for 
verification that need to analyze your source code (for example to apply instrumentation 
for structural coverage analysis), you should ensure that those tools support the 
language(s) you’re using.  

• Choice of coding standard(s) – DO-178C compliance requires that you define 
coding standards during your planning and follow them during your implementation. 
The standard(s) that you use can affect the ease of your verification:

•  Generally, the fewer and simpler the code constructs you use, the less effort you’ll 
need to verify your software.

•  Some language constructs may not be supported by some commercial verification 
tools you intend to use, which may cause your project further costs or delay. If you 
evaluate verification tools, it’s worth ensuring that they can analyze sample code 
written with the coding standard you plan to use. 

•  Some coding standards require generated code to be written in a way that can 
cause development of untestable code, such as a standard requiring that default 
cases are included in every switch function. At higher DALs, you’ll need to review 
this code even if you can’t test it, which can incur extra effort. The cost of changing 
any of the items above grows larger the further you are through a DO-178C 
project, so you should ideally consider them before your DO-178C Planning.

•  DO-178C states that your coding standard should include code complexity 
restrictions. Limiting code complexity in general makes it easier to verify the 
code, while limiting the use of specific language features may be necessary for 
your source code to be compatible with the verification techniques and tools that 
you intend to use. If you are working at DAL A, you may need to take care to 
structure your low-level requirements so that your corresponding source code 
does not need an excessive number of conditions per decision. This will reduce 
the effort needed to achieve and maintain full MC/DC of your source code later 
(see Structural coverage analysis on page 46).

Your implementation decisions can affect the efficiency of your verification. To 
keep your verification efficient, you should consider the impact that your choices 
(including programming language(s), coding standard(s) and choice of hardware 
platform and operating system) will have on your verification.

TIP



page 21 | Efficient verification through the DO-178C life cycle

• Choice of hardware platform and operating system  –  your choice of hardware 
platform and operating system can have huge effects on the timing behavior and 
predictability of the final software, especially if you are using multicore processors. 
Some platforms and operating systems may have in-built features that make your 
verification easier – it’s worth evaluating a range of options early and considering 
downstream effects on verification. For example, using hardware with on-chip tracing 
capabilities can make worst-case execution time analysis much easier than if only off-
chip tracing capabilities are available. 

• Choice of compiler and compiler options  –  the compiler and compiler options you 
use can affect how easy it is to verify your code. Your compiler and compiler options 
can especially affect the efficiency of your structural coverage analysis. Structural 
coverage analysis can be performed either by analyzing execution of source code or 
object code constructs (see Source code vs. object code structural coverage analysis on 
page 51). If object code is analyzed, additional verification may be needed to map the 
object code coverage to the source code. Compilers can optimize the code, making 
it require more effort to do this mapping. For DAL A software, it is also necessary to 
verify any additional code that is introduced by the compiler. In both cases, the more 
compiler optimizations that you allow to occur, the more effort you’ll need to verify 
your code. 

• Use of emerging technologies   –  if your implementation uses emerging technologies 
such as using GPU devices rather than CPU devices for computation, using multicore 
systems, or data-driven computation, your verification may be more challenging and 
time-consuming. While verification methodologies are well established for “standard” 
implementations, this is not the case for implementations using emerging technologies, 
and verification tool support is less available.  

The cost of changing any of the items above becomes increasingly large the further you 
are through a DO-178C project, so you should ideally consider them before your DO-178C 
Planning.

Figure 8 – Implementation decisions that can affect verification efficiency

In recent times, 

there has been an 

increasing use of 

Graphical Processing 

Units (GPUs) for 

computation 

in the avionics 

industry. Using 

GPUs for compute 

offers benefits 

when performing 

computationally 

intensive tasks due to 

high parallelization. 

By developing COTS 

GPU libraries to 

be used for safety-

critical software, GPU 

manufacturers are 

supporting the use 

of GPUs by industries 

including the avionics 

industry.

GPUs for compute



Efficient verification through the DO-178C life cycle  | page 22  

5.3.2 It may pay to start verification early

Some verification activities, such as structural coverage analysis, take a long time. If your 
implementation generates code that can’t be verified using your chosen methodology, 
you’ll incur extra costs and potentially delays by needing to return to your implementation. 
This can be mitigated by verifying your code as you write it. A sensible approach is to write 
tests to ensure that you can get full coverage at the granularity you need it, then implement 
these as regression tests that are run throughout your development. While these are not 
requirements-based tests, and as such you won’t be able to use them to support your 
compliance argument (see Unit testing is not enough on page 39), they give you confidence 
that you can test your code fully, and you’ll be made aware of any changes to coverage 
from your regression tests so that you can rectify them. Some software verification tools 
can help you automatically generate test vectors to test your code in this way, reducing the 
effort needed to do so.

Figure 9 – Starting verification early and setting up regression tests can help you avoid 
unwanted suprises late in the compliance process



page 23 | Efficient verification through the DO-178C life cycle

5.3.3 Using model-based design (DO-331)

Model-based design technologies can reduce the effort needed to design and test 
compliant software. Some benefits of using model-based design include being able to 
simulate software behavior, supporting unambiguous expression of requirements and 
software architecture, enabling automated code generation, and being able to perform 
some verification activities earlier in the software life cycle than would otherwise be 
possible.   

RTCA DO-331 (Model-Based Development and Verification Supplement to DO-178C and 
DO-278A) provides additional objectives that apply when using model-based design in  
DO-178C projects, and clarification of how existing DO-178C objectives and activities apply 
to projects using model-based design.

One of the key additional verification activities discussed in DO-331 is model coverage 
analysis, which aims to  detect unintended functionality in the model. As per DO-331, 
performing model coverage analysis does not eliminate the need to perform coverage 
analysis of the generated code that will actually execute. 

The simulation tools provided by model-based design tools can reduce verification effort 
by providing a means to produce evidence that a model complies with its requirements. 
As per DO-331, using simulation does not eliminate the need to perform testing of the 
executable object code on the target hardware.  

If you choose to use model-based design processes in a DO-178C project, you will need 
to understand the guidance in DO-331 and identify model-based design tools, as well as 
your verification and tool qualification strategies, in your DO-178C planning documents 
(see Planning on page 6).

5.3.4 Using object-oriented programming and related techniques 
(DO-332)

RTCA’s DO-332 (Object-Oriented Technology and Related Techniques Supplement to  
DO-178C and DO-278A) provides additional objectives that apply for design,  
implementation and verification activities when using object-oriented programming and 
related techniques in DO-178C projects. It also clarifies how existing DO-178C objectives 
and activities apply to projects using these technologies and includes a discussion of 
vulnerabilities that may arise due to using object-oriented programming. While some 
organizations may avoid using object-oriented programming as this would require 
following DO-332, proper planning and use of the technology can lead to better software 
design and more maintainable and reusable implementations.

Object-oriented 

programming and 

related techniques 

offer benefits that 

can be attractive to 

software engineers, 

such as allowing 

encapsulation, 

increased code 

reusability and easier 

troubleshooting of 

code issues. As such, 

these technologies 

are often used in the 

aerospace industry.  

Object-orientated 
programming



Efficient verification through the DO-178C life cycle  | page 24  

Some examples of extra objectives that must be achieved when using object-oriented 
programming include:

• Planning dynamic memory management and exception management strategies in 
your software architecture

• Verifying class hierarchy with respect to high-level requirements

• Verifying methods with respect to requirements

• Verifying local type consistency in the source code

• Verifying that dynamic memory management and exception management 
implementations are consistent with your software architecture and high-level 
requirements 

If you choose to use object-oriented programming in a DO-178C project, you will need to 
understand the guidance in DO-332 and consider the impact that using the technology will 
have on all stages of your DO-178C life cycle, including verification. You will need to write 
up your implementation and verification strategies in your DO-178C planning documents 
(see Planning on page 6). 

5.4  The Development milestone (SOI#2)
Before you have finished your Development, but when you have examples of each of your 
Development artifacts (typically 60%-80% of your total expected artifacts), you should 
conduct SOI#2 with your certification authority. SOI#2 focuses on the development process 
and artifacts, but the review also considers verification processes that should be running 
concurrently with Development – specifically, the review activities being implemented. 
SOI#2 may also look forward to the verification phase to see if there are any examples 
where verification activities have provided feedback to development activities. This may 
include, for example, test case development or test environment development providing 
feedback to your requirements and design processes to ensure that test activities can 
completely verify the functionality expressed in your requirements and design.



page 25 | Efficient verification through the DO-178C life cycle

A number of verification activities are required by DO-178C. Some of these activities involve 
verification of the developed software (see Verification of DO-178C software on page 31), while 
some involve verification that your DO-178C verification process was correctly followed (see 
Verification of the verification process on page 46).

Many verification activities can be performed either manually or by using automated tools 
to help run the analysis. When automated tools are used to achieve a DO-178C objective 
without their output being verified, those tools must be qualified for use following the DO-
330 Guidelines (see Qualifying verification tools (DO-330) on page 60). Qualification materials 
are often available from COTS tool providers.  

As we discussed earlier, the number of verification objectives you must meet depends on the 
DAL level of your software: 

• For DAL A systems, 43 of the 71 applicable objectives relate to verification

• For DAL B systems, 41 of the 69 applicable objectives relate to verification

• For DAL C systems, 34 of the 62 applicable objectives relate to verification

• For DAL D systems, 9 of the 26 applicable objectives relate to verification 

Figure 10 – Verification activities in DO-178C compliance

6. Verification



Efficient verification through the DO-178C life cycle  | page 26  

6.1  Preparing for SOI#3

During SOI#3, you will need to provide evidence that you have produced compliance 
artifacts for each of the verification activities you need to comply with based on your 
software’s DAL (see The Verification milestone (SOI#3) on page 62). 

Because of this, it makes sense to begin your verification activities early and not leave 
verification activities until late in your project life cycle. 

6.2  Who does the testing?
Many DO-178C objectives that involve testing require independence in testing at some 
DALs. When this is required, the person (or group) implementing a particular item and 
the person (or group) verifying that item must be different. Independence requirements 
are identified within DO-178C’s objective tables. Higher DAL developments require 
independence on a larger number of objectives than lower DAL developments.

6.3  Testing on-host vs. on-target

The ideal method used to perform a final run for score (see The final run for score on 
page 63) to produce verification results is to run tests on an integrated hardware/software 
environment representative of your final flight system. This stems from the following 
activities in DO-178C:

• 4.4.3.b – “The differences between the target computer and the emulator or 
simulator, and the effects of these differences on the ability to detect errors and verify 
functionality, should be considered. Detection of those errors should be provided by 
the software verification process and specified in the Software Verification Plan.”

• 6.4.1.a – “Selected tests should be performed in the integrated target computer 
environment, since some errors are only detected in this environment.”

To prepare for SOI#3, make sure that you begin verification early to produce 
compliance artifacts for every verification activity you need to perform.

TIP

Access to test environments representative of the final system is often limited 
until later stages of DO-178C projects. Beginning verification early with on-host 
testing and migrating to on-target testing when on-target test environments 
become available is an excellent verification strategy.  

TIP

RTCA defines 

independence 

as separation of 

responsibilities 

to ensure the 

accomplishment of 

objective evaluation. 

For software 

verification activities, 

independence is 

achieved when the 

verification activity 

is performed by a 

person(s) other than 

the developer of the 

item being verified.

Independence in  
DO-178C testing



page 27 | Efficient verification through the DO-178C life cycle

It is rarely practical to run all tests on the final system, however, due to two major limitations:

• Cost – on-target testing is much more expensive than on-host testing. Due to the cost 
of hardware test rigs, the number and availability of these can be a limitation, while the 
availability of systems for on-host testing is never limited in this way.  

• Availability of test rigs – test rigs may not be available until relatively late in your 
Development, meaning that if you choose to only do on-target testing, your testing 
may be delayed by lack of test rigs, potentially introducing delays in your project.   

Typically, a range of test environments is defined as part of the Software Verification Plan 
activities, for example the following: 

• On-host – on-host testing environments are useful for early stages of verification to 
set up and evaluate testing processes, especially when targets may not yet be available. 
On-host tests provide less assurance that test behavior is representative of behavior 
on the final flight system for a number of reasons, for example because the compiler 
and compiler options used may not be representative of the final target. When 
running tests on-host, some devices may not be available and not all functionality can 
be tested.

• On-host simulator – simulator environments are again useful for early stages of 
verification. A simulator of the target will typically use a cross-compiler with the same 
compiler options that will be used on the final target and tests run on a simulator will 
thus be more representative than tests run on-host. While tests run on a simulator 
provide more assurance than those run on-host, they are still not enough to provide 
assurance of the final flight system – simulators may not be able to accurately simulate 
all devices, and not all functionality can be tested. 

• A range of on-target test environments may be available during a project, which are 
more or less representative of the final flight system. While many types of environment 
may exist and may be given different names by different DO-178C applicants, we will 
describe some example environments as Model A-C environments:   

•   Model A (blue label) – a Model A environment may be a development board that 
uses the same or a similar CPU and target compiler as the final system. Typically, 
these environments have other devices to aid in debugging and testing, enabling 
testing of some devices that will exist on the final target.

•   Model B (red Label, open box) – a Model B environment may be very similar 
to the final system e.g. including the intended RTOS, BSP and devices, but still in 
development. The hardware in these environments may be modified compared 
to that intended for the final flight system to support testing and debugging. For 
example, the Model B environment may have extra hardware set up to expose 
GPIO pins or debugger headers for testing and debugging purposes. All devices in 
the final system would typically be available. 



Efficient verification through the DO-178C life cycle  | page 28  

•   Model C (black label, closed box) – a Model C environment will be the final board 
itself. This may have limited or no connectivity to support debugging. Typically, all 
tests for the run for score would be performed on a Model C environment, but 
due to the cost of this testing, this would only be done after it is known that the 
system is working and that the tests are complete (after testing using previous test 
environments).

A sensible approach to testing is to start on-host testing early in your project (see It may 
pay to start verification early on page 22), then start on-target testing (e.g. Model A, B or C) 
later, when test rigs are available. 

6.4  Manual vs. automated verification

It is possible to do all of the verification needed for DO-178C compliance manually, but it 
would be extremely inefficient. 

Verification activities can be performed entirely through manual processes, can be 
assisted by tools, or can be performed using tools alone. Tools can be developed internally 
or provided by external suppliers. Using tools can help you automate time-intensive 
verification activities, but there are factors to consider in deciding whether or not to use a 
tool rather than a manual process for a specific verification activity. These include the size 
and complexity of your code base, the complexity of the verification activity, and the time-
saving that using a tool may be able to provide throughout the lifetime of your project.

Developing an internal tool for a specific verification activity can be a good idea as you 
can develop it to best meet your specific use cases, however the cost of developing and 
maintaining such a tool can be high, and if you need to provide tool qualification evidence 
for an internal tool you use (see Qualifying verification tools (DO-330) on page 60), you will 
need to either develop this internally or find another company to do the qualification for 
you. 

If you have any specific needs from a verification tool and these aren’t addressed by any of 
the tools on the market, it may pay to contact several vendors and discuss whether they 
are willing to develop features for you.

The best option of whether to use a verification tool or not for a specific verification 
activity depends on the project. For relatively simple verification activities for 
which little rework is likely to be required, using manual processes may be the 
better option, while for complex and time-consuming verification activities for 
which rework is likely, an automated tool may be the better option. You should 
always consider whether your use of any tool will need to be qualified or not and 
if qualification kits are available for any tools you evaluate. 

TIP



page 29 | Efficient verification through the DO-178C life cycle

Ultimately, the decision of whether to use tools or not should depend on whether this will 
make your verification more efficient. While tools may make some verification projects 
more efficient, every project has different needs, and in some cases, for example in a small 
project, using a tool may not improve your efficiency. It is best to consider the specific 
needs of your project and compare the efficiency of using manual processes vs. using an 
automated tool.  

6.5  Tool qualification and DO-330
The DO-330: Software Tool Qualification Considerations supplement to DO-178C gives 
specific guidance on situations in which you need to qualify any verification tools you use 
in order to demonstrate that they work as intended. 

For more information on Tool qualification and DO-330, see Qualifying verification tools 
(DO-330) on page 60.

6.6  Documenting verification results
Certification authorities will expect that you document your verification results in a series 
of documents, some of which you will submit in your final compliance demonstration data. 
The documents that are typically expected include:

• Software Accomplishment Summary (SAS), which gives the overall compliance 
position, states the timing and memory margins, and summarizes any agreed process 
deviations and open or deferred problem reports. This document is always submitted.

• Software Verification Results (SVR), which lists the verification activities conducted 
(reviews, analyses and tests), gives the results, summarizes problem reports for 
any failed verification activities, and typically also includes traceability and coverage 
data. This document is sometimes submitted and sometimes just made available for 
external review.

• Software Verification Cases and Procedures (SVCP), which gives the design of 
each review, analysis and test to conduct. This includes details such as test environment 
setup, schedules, staffing, auditing, and efficiency concerns. It isn’t expected that this 
document is submitted.

Other documents may be expected if you are using emerging technologies in your 
development. 

The above list makes a one-to-one correspondence between a named DO-178C output 
and a document. In practice, you can structure your deliverables into whatever document 
arrangement best suits your development approach. This includes splitting out one output 
into multiple documents (e.g. to put all your resource usage verification planning into a 
separate document) or supporting one document with another more detailed document 
(such as a general execution time test strategy document supporting the resource usage 
part of the SVCP).



Efficient verification through the DO-178C life cycle  | page 30  

The form of the SVR will depend on the verification activities performed.

• For reviews, the SVR would typically summarize the completion of checklists, while 
the checklists themselves stored under appropriate configuration control with unique 
identifiers.

• For analyses, you will often create dedicated analysis reports. For example, your 
resource usage results and structural coverage analysis results might be best 
presented in their own reports and then summarized in the SVR. For consistency and 
maintainability, consider generating the summary as part of the detailed document, 
and then copying that across to the SVR. This will make it easier to deploy review 
effort: experts reviewing the detailed document can check the detailed meaning of the 
summary, while the consistency of the text between the documents can be handled 
with a review checklist item.

• For tests, you will keep the results of test execution (e.g. log files or test tool output 
files) and summarize those in the SVR. Make sure that you can trace each test execution 
result back to the corresponding test procedure and to the verification environment 
configuration that was used for the testing.

If part of your SQA activity involves witnessing or repeating verification activities (see 
Ongoing SQA activities on page 12), you will typically document those as part of the SQA 
record. If the result of a repeated activity is different to the original result, you should 
invoke your problem reporting process (see Problem reporting on page 10) to analyze and 
repeat the activity.

6.7  Multicore systems
The use of multicore systems brings extra complexity to software behavior, and as a 
result to the verification activities that must be performed to provide sufficient design 
assurance. As multicore systems were not used in avionics when DO-178C was released, 
DO-178C itself includes no guidance on certification concerns for multicore systems. 
This was addressed by the CAST team in CAST-32A2 , which is due to be superseded by  
A(M)C3  20-193 in 2021. For more information on DO-178C compliance of multicore systems,  
see Verifying multicore systems (A(M)C 20-193/CAST-32A) on page 57.

2https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/media/cast-32A.pdf 
3A(M)C refers to either EASA AMC (Acceptable Means of Compliance) or FAA AC (Advisory Circular) 

documents.



page 31 | Efficient verification through the DO-178C life cycle

6.8  Verification of DO-178C software
For DO-178C compliance, software must be verified against both functional and non-
functional requirements.

DO-178C software must be shown to comply with the coding standards 
you have agreed to follow in your DO-178C planning (see next section).
Functional requirements in DO-178C projects should be verified by  
requirements-based functional testing (see Requirements-based functional testing on page 
33), while non-functional requirements are typically verified with a combination of test, 
review, and analysis, including analysis of the resource usage of the DO-178C system (see 
Resource usage analysis on page 39). 

6.8.1 Checking compliance to coding standards

For DO-178C compliance, you must demonstrate that you have followed the coding 
standards that you said you would follow in your Software Development Plan  
(see Planning on page 6).

DO-178C verification 

activities can include 

reviews and analyses 

as well as tests. 

According to  

DO-178C, a test 

exercises a component 

to verify that it 

satisfies requirements 

(both normal range 

and robustness 

requirements), while 

a review provides a 

qualitative assessment 

of correctness, and 

an analysis provides 

repeatable evidence of 

correctness. 

DO-178C tests,  
reviews, and analyses

Figure 11 – Software develpoment model showing likely locations of SOI audits

It pays to check your code’s compliance to coding standards early, and this should 
ideally be a continuous process throughout your implementation. This is because 
any deviations of your implementation from your coding standard will necessitate 
changes to your code, which will have a downstream effect on all other verification 
activities, requiring rework.

TIP



Efficient verification through the DO-178C life cycle  | page 32  

Manual vs. automated compliance checking

Compliance to coding standards can be checked manually or supported through the use 
of automated compliance checking tools. 

Compliance can be analyzed manually by reviewing every section of the code against your 
coding standard. This can take a long time, the process is prone to human error, and if any 
changes are made to the code after a specific component is checked, it may incur extra 
rework. Nonetheless, if your implementation uses relatively few lines of code, following a 
manual approach may be preferred. 

Due to the factors above, most companies working towards DO-178C compliance use 
automated tools to check compliance to coding standards, which significantly reduces the 
effort needed to check for compliance. Most tools support checking against commonly 
used coding standards such as MISRA CTM for C and C++ code4. If the coding standard you 
plan to follow includes rules not present in these standards, some tools may offer features 
to let you define custom rules to check your code against. Most compliance checking tools 
will integrate with any continuous integrations tools you use, so compliance checking is 
automatically performed with each update of the source code. If you choose to use a 
compliance checking tool, you should consider whether the tool is qualifiable for DO-178C 
(see Qualifying verification tools (DO-330) on page 60) – if not, you’ll need to manually review 
the results generated by the tool. 

Using a tool to check compliance against coding standards is generally preferred 
for DO-178C compliance as code compliance checking is a highly computational 
activity. When evaluating compliance checking tools, it makes sense to consider 
the following:

• Does the tool support the coding standard you plan to use? 

• If you’re not using a commonly used standard, does the tool let you define 
custom rules?

• Does the tool integrate with the continuous integration software you are 
using?

• Is the tool qualifiable for DO-178C?

TIP

4https://www.misra.org.uk/MISRAChome/tabid/181/Default.aspx



page 33 | Efficient verification through the DO-178C life cycle

6.8.2 Requirements-based functional testing

DO-178C requires evidence to demonstrate that the function of the code has been tested 
adequately with respect to the system’s high and low-level requirements in two ways:

• Normal range testing provides evidence that the software will provide intended 
aircraft function and that it complies with high and low-level requirements 

• Robustness testing provides evidence that the software will provide intended aircraft 
function for all foreseeable operating conditions

Both types of testing should be done without examining the implementation.

With the exception of DAL D software, for which testing need only be done against high-
level requirements, the expectation when following DO-178C guidance is that every high 
and low-level requirement in the system has been tested by both normal range and 
robustness tests. When tests are complete, one or more test cases should be directly 
traceable from every requirement in the system. 

The execution of requirements-based tests can be done manually, but this is a laborious 
process, so automated functional testing tools are often used. 

As you’ll need to document the method by which you plan to perform 
requirements-based testing in your DO-178C planning documents, you should 
evaluate methods early during your DO-178C planning. If you choose to use 
any functional testing tools, you should also evaluate these early.   

TIP



Efficient verification through the DO-178C life cycle  | page 34  

Requirements-based functional testing in DO-178C

The need to perform requirements-based testing for DO-178C compliance is listed in 4 
DO-178C objectives – 6.4.a, b, c and d (Table 1).

Table 1. DO-178C objectives relating to requirements-based testing  
(Source: RTCA DO-178C)

Objective Applicability (DAL) Output

ID Description Ref. A B C D Description Ref.

A-6, 1 Executable Object 
Code complies 
with high-level 
requirements.

6.4.a     Software 
Verification 
Results

Trace Data

11.14

11.21

A-6, 2 Executable Object 
Code is robust 
with high-level 
requirements.

6.4.b     Software 
Verification 
Results

Trace Data

11.14

11.21

A-6, 3 Executable Object 
Code complies 
with low-level 
requirements

6.4.c     Software 
Verification 
Results

Trace Data

11.14

11.21

A-6, 4 Executable Object 
Code is robust 
with low-level 
requirements

6.4.d     Software 
Verification 
Results

Trace Data

11.14

11.21

 
 Objective required at DAL 
  Objective required with independence at DAL



page 35 | Efficient verification through the DO-178C life cycle

For DAL D software, functional testing is only required against high-level requirements. 
For higher DALs, it is required against both high and low-level requirements. For DAL B 
software, there must be independence between those implementing the code and those 
verifying that it complies with low-level requirements, while for DAL A software, there must 
be independence between those implementing the code and those verifying that it both 
complies with and is robust with low-level requirements.

Normal range and robustness testing

Normal range testing involves testing how the software responds to normal inputs and 
conditions. Each normal range test used to claim compliance must trace to a high or low-
level requirement. As normal range tests used to claim DO-178C compliance must be 
requirements-based, unit testing is not appropriate for demonstrating compliance, though 
it can still be useful (see Unit testing is not enough on page 39).  

Robustness testing involves stressing the system, including comprehensively testing it with 
the full range of equivalent data classes, and testing its behavior when abnormal conditions 
and faults are present. In robustness testing, abnormal conditions should be tested, such 
as testing a function with input values outside the expected range.

When testing a component for robustness with respect to data inputs, not all possible 
values must be tested – DO-178C defines the concept of equivalence classes, or classes 
of data that behave in an identical way, and it is only necessary to test a single member of 
each equivalence class. To make your generation of robustness tests more efficient, you 
should ensure that you identify the equivalence classes in your system early, and you may 
want to design the interfaces and data dictionary of your system to limit the number of 
equivalence classes you will need to test. 

Testing on-host vs. on-target

To comply with DO-178C guidance, you will need to collect evidence that the Executable 
Object Code meets its requirements while it executes on a target as representative of the 
final environment as possible. Typically, access to such a target may not be available until 
later stages of the project (see Testing on-host vs. on-target on page 26). 

While you may not be able to claim credit for on-host testing, using this approach can still 
be sensible as it allows you to de-risk your on-target testing as much as possible until you 
have access to test rigs for on-target testing. In such an approach, you may develop and run 
tests on-host during the early stages of the project (see It may pay to start verification early 
on page 22), then repeat them on a Model A/B/C system (see Testing on-host vs. on-target on 
page 26) when the tests are relatively complete and these test environments are available. 
It may not be possible, however, to run tests against some high-level requirements on-
host, as these tests may need the devices intended for the system to be available.



Efficient verification through the DO-178C life cycle  | page 36  

Manual vs. automated functional testing

Functional testing can either be performed mostly manually (the software will of course 
still need to be compiled and run) or can be supported by using an automated functional 
testing tool. 

Manual functional testing can take a huge amount of time, the process is prone to human 
error, and if any changes are made to the code after the functional testing is performed, 
it may incur significant extra rework. For this reason, most companies working to DO-
178C guidance use automated functional testing tools, which improve testing efficiency by 
automating or supporting some or all of the following:

• Writing functional tests – most tools provide one or more methods to write 
tests that are more efficient for functional testing than using raw code in common 
programming languages such as C. Testing formats are typically designed to make it 
easy to write and review tests. The test formats supported by different tools differ, and 
tools offered by some vendors may better fit your project and use cases, so it pays to 
consider your options. You should consider whether the tool you select can help you 
test abnormal conditions by forcing abnormal software behavior and injecting faults.

Using a tool to run requirements-based tests is generally preferred for 
DO-178C compliance as functional testing is a highly computational 
activity. When evaluating functional testing tools, it makes sense to 
consider the following:

• Which test formats are available with the tool, and how can they help you 
reduce test authoring effort?

• Can the tool help you write and run robustness tests through forcing 
abnormal software behavior and injecting faults?

• Can the tool run tests on-target?

• Will the tool integrate with your existing system, or do you need to modify 
your system to use it?

• Can the tool help you merge results from different tests and builds?

• Does the tool integrate with any continuous integration tools you are 
using so you can view your results throughout your project?

• Is the tool qualifiable for DO-178C, and are any of its features that you 
want to use qualifiable (if needed)? 

TIP



page 37 | Efficient verification through the DO-178C life cycle

• Convert tests into test harnesses that can be run on the host computer or 
target hardware – functional testing tools convert test cases written in an appropriate 
input format into a test harness that can be executed to collect results. As on-target 
testing is crucial for DO-178C compliance (see Testing on-host vs. on-target on page 26), 
you should ensure that any tools you evaluate create a test harness that can be run 
on-target. 

• Run the tests on-host or on-target to collect results – some functional testing 
tools may integrate with your build system to automatically run generated tests 
on your local machine or target system, saving effort as you don’t need to do this 
manually. As on-target testing is crucial for DO-178C compliance (see Testing on-host 
vs. on-target on page 26), you may want to ensure that any tools you evaluate can run 
tests on your target hardware. Note that it should be possible for a tool to integrate 
with your build system to run tests – if a tool you’re evaluating isn’t able to offer this 
and requires you to integrate with a specific build system or compiler, for example, you 
may want to consider other options. 

• Analyze results – functional testing tools will typically provide features that help 
you efficiently analyze test results and make any modifications needed, for example 
filtering options that let you quickly identify failing tests. Some tools may provide further 
features that can help you analyze results, such as integrating with any continuous 
integration system(s) you may be using so test results can be automatically collected 
during every build of the code, letting you track test results throughout the project. As 
mentioned above (Writing functional tests), the testing format(s) used by a tool can 
help reduce review effort. When selecting a tool, it is sensible to consider how the 
available features may support your verification. 

• Merge results – you’ll likely produce test results from a large number of different 
builds. Some functional testing tools can help you merge results from those tests into 
a single report. If you use such a feature, you should consider whether the feature is 
qualified for DO-178C (see Qualifying verification tools (DO-330) on page 60) – if not, 
you’ll need to manually review the results.

• Traceability – traceability information is crucial in DO-178C compliance, and you may 
be asked to demonstrate traceability artifacts during SOI audits (see The importance of 
requirements traceability on page 16). Functional testing tools can make it much easier 
to trace between your artifacts quickly. Some tools support traceability by integrating 
with requirements management tools so you can efficiently import requirements 
information to add to your test results and potentially export requirements information 
back to your requirements management tool.  

• Export results and traceability results – when providing DO-178C compliance 
evidence for functional testing, you will need to include a summary of your test results, 
and you’ll likely have many such results. Most functional testing tools will include 
features to export your results much more efficiently than using manual processes. 
In some cases, exports will also include traceability results. If you plan to use export 
features to generate your final compliance results, you should consider whether any 
export features you plan to use are qualified for DO-178C (see Qualifying verification 
tools (DO-330) on page 60) – if not, you’ll need to manually review the exports. 

Some functional 

testing tools, like the 

Rapita Verification 
Suite, enable users 

to merge results from 

separate test runs. An 

example use case of 

this feature is merging 

results collected 

from different testing 

strategies (system, 

integration and lower 

level testing) and 

different builds to 

combine test results 

into a single report. 

Along with test results, 

structural coverage 

and timing data can 

also be merged. 

Merging test  
results



Efficient verification through the DO-178C life cycle  | page 38  

When evaluating functional testing tools, it is important to consider whether any features 
you plan to use are qualifiable for DO-178C (see Qualifying verification tools (DO-330) on 
page 60). If they aren’t and they need to be, using such a feature may be a false economy 
as you may need to manually review any relevant artifacts generated by the tool.

You need to test what you fly

A common approach to functional testing is to use a commercial functional testing tool 
to create a functional test harness and collect results. Often, structural coverage analysis 
(see Structural coverage analysis on page 46) is run at the same time. The methods used by 
most structural coverage analysis tools to collect coverage results involve adding additional 
“instrumentation” code to the source code. As this instrumentation code may interfere 
with the function of the code, the final run for score (see The final run for score on page 63) 
should be run with an executable compiled without additional instrumentation code or 
any other code that is not directly traceable to a high or low-level requirement.  

Figure 12 – How functional testing tools can support verification activities 



page 39 | Efficient verification through the DO-178C life cycle

Unit testing is not enough

In many software industries, functional testing is achieved in part by traditional unit testing 
(testing a specific subcomponent) of the code. Traditional unit tests may, for example, test 
that expected output values are returned from a subcomponent of the code when a range 
of input values are tested. When developing software according to DO-178C guidance, 
however, traditional unit tests are not an appropriate means of compliance – functional 
tests used to claim compliance must be written to satisfy high or low-level requirements 
of the system.

While units test results can’t be submitted for DO-178C compliance, it may still be useful 
doing unit testing, as unit tests can be created at the same time the code is implemented 
(while this may not be the case for requirements-based tests), they can be used to ensure 
that it is possible to get 100% coverage of the implemented code, and they can contribute 
to a suite of regression tests (see It may pay to start verification early on page 22).  

Ensuring completeness

As you approach your run for score (see The final run for score on page 63), you should 
ensure that all of your requirements have been completely covered by tests. This means 
not only that you should have tests traceable to every requirement, but also that you 
should have all of the tests needed to fully test the requirement, including any robustness 
tests. 

6.8.3 Resource usage analysis

When following DO-178C guidance, it is necessary to provide evidence that resource usage 
in software has been considered and analyzed. DO-178C software has requirements that 
relate to usage of a range of resources, including:

• Memory requirements such as memory usage, stack usage and cache management

• Timing requirements (response time and execution time)

• Requirements related to contention in areas of the system such as bus loading and 
input/output hardware 

While unit tests can’t be used to claim credit for DO-178C compliance, 
they can be a good way to informally test your code and set up a suite 
of regression tests that can help you identify issues earlier and reduce 
overall verification effort. 

TIP



Efficient verification through the DO-178C life cycle  | page 40  

The ability of software to meet these requirements does not typically decompose easily 
across components. Instead, resource usage requirements relate to emergent properties 
of the fully integrated software. While you cannot completely determine these properties 
before formal verification, you can take steps to control and monitor the ability to meet 
these requirements (and hence likely save overall compliance effort) throughout the 
software life cycle. As with most verification activities, it makes sense to begin considering 
how you will analyze resource usage early in your DO-178C process.

Resource usage analysis in DO-178C

DO-178C includes three objectives related to resource usage analysis, as shown in Table 2.

Table 2. DO-178C objectives relating to resource usage analysis (Source: RTCA DO-178C)

Budgeting and measuring execution time is the most challenging aspect of resource usage 
management. We focus on specific issues relating to execution time analysis in Worst-case 
execution time analysis on page 43.

Objective Applicability (DAL) Output

ID Description Ref. A B C D Description Ref.

A-4, 
13 

Software 
partitioning integrity 
is confirmed.

6.3.3f     Software 
Verification 
Results

11.14

A-5, 
6 

Source Code is 
accurate and 
consistent.

6.3.4f     Software 
Verification 
Results

11.14

A-6, 5 Executable Object 
Code is compatible 
with target 
computer.

6.4.3a     Software 
Verification 
Cases and 
Procedures

Software 
Verification 
Results

11.13

11.14

 
 Objective required at DAL 
  Objective required with independence at DAL



page 41 | Efficient verification through the DO-178C life cycle

Analyzing resource usage

As is the case with all verification activities, development and implementation of a robust, 
efficient methodology for analyzing resource usage involves considering the activity 
throughout the DO-178C life cycle, beginning with Planning (see Planning on page 6). 

For DO-178C compliance, you will need to be able to check that your requirements are 
feasible when you review them. As such, when you create and review your requirements 
standard, you should ensure that it explains how to write requirements for resource 
usage that you will be able to verify (see Your requirements should be verifiable on page 
15). In your processes, you should also include the steps you will take if you discover that 
resource usage requirements are infeasible. If you discover this early, you may be able to 
negotiate with system design and safety processes, or the hardware design, to implement 
an alternative approach. If you only discover these issues later in the process, however, 
you will have fewer options, and may even be forced to re-allocate budgets and re-work 
unrelated parts of the software to meet resource usage requirements.

When you develop high-level requirements (see High-level requirements on page 14), you 
should identify which of your requirements relate to emergent resource usage. This will 
allow you to track the status of your resource usage analysis by using traceability from 
these requirements. 

When you develop the architecture for your software (see Design on page 17), decomposing 
your resource usage requirements and allocating them to each component in your 
software architecture can help you to de-risk late discovery of resource usage issues. 

To efficiently comply with DO-178C’s resource usage objectives, you 
should consider resource usage analysis throughout the DO-178C 
process by: 

• During planning, developing a requirements standard that ensures that you 
can mitigate against unwanted surprises later. 

• When designing your software, identifying high-level requirements that relate 
to resource usage and decomposing these to specific software components 
can help you mitigate the risk of late discovery of resource usage issues.

• Collecting evidence on your software’s resource usage during your 
requirements-based testing. Using a consistent approach for monitoring 
resource usage at all levels of testing can help you reduce analysis and review 
effort.

• Throughout your DO-178C process, recording your resource usage analysis 
progress in a resource usage report. This is an efficient way of developing 
the evidence you’ll need to demonstrate compliance against resource usage 
objectives.

TIP



Efficient verification through the DO-178C life cycle  | page 42  

There is no general analytical method to apply when 
allocating resources to components, but the accepted 
practice is to divide up your available resources with 
a tentative budget for each component, and monitor 
component resource usage against that budget. 
Your Software Verification Plan should explain how 
verification at lower levels relates to the achievement 
of requirements at higher levels. For memory usage, 
including all of the different linker sections as well 
as stack and heap size budgets can help to manage 
and trade off budgets throughout development. 
Your target and/or tool chain may impose limits here 
as well – for example, your linker may be unable to 
handle data storage that spans multiple on-target 
memory segments. If your software architecture 
includes partitioning, you will need to demonstrate that 
partition breaches are prevented. Even if you are not 
using partitioning, you should still consider how to mitigate the effects of exceeding your 
component budget.

Your review processes for your software architecture should include feasibility checks after 
your architecture has been defined but before your software has been implemented. For 
execution time analysis, you can use schedulability analysis to show that, if tasks fit within 
their budget, the software as a whole will meet its deadlines. For static memory usage, you 
can usually just add up the allocated sizes to show that they fit, but you should be aware 
that some memory may need to be allocated in specific devices to be able to support 
your software’s functionality. For dynamic memory usage, you should consider the call tree 
within and between components as well as any dynamic allocations made during start-up. 
In all cases, you should consider how you will demonstrate a repeatable analysis process 
to be able to meet SQA objectives. 

When developing your requirements-based tests (see Requirements-based functional testing 
on page 33), you will need to develop test cases that trace to the resource allocations 
you made during your software design. Even though these logically fit within the software 
integration level of testing, you will find it useful to be able to execute these scenarios during 
hardware-software integration testing to verify resource usage (and hence compatibility 
with the target computer) in that environment. When you run requirements-based tests, 
you should ensure that you monitor resource usage consistently at all levels of testing, as 
this will help you reduce analysis and review effort. This may mean, for example, using the 
same approach that you use for execution time testing against low-level requirements for 
your software integration testing and hardware-software integration testing. 

Collating your current progress and achievements for verifying your software’s resource 
usage in a Resource Usage Report throughout your DO-178C project can be an 
efficient way of showing that your development meets the relevant DO-178C objectives  
(see Resource usage analysis on page 39). This document should include links to your 
resource usage requirements.

Figure 13 – RapiTask displaying CPU utilization metrics



page 43 | Efficient verification through the DO-178C life cycle

Worst-case execution time analysis

To adhere to DO-178C guidance, you will need to produce evidence that demonstrates that 
your software meets its timing deadlines as defined in high and low-level requirements. 
This is demonstrated by performing worst-case execution time (WCET) analysis. 

Two main methods are used to analyze software WCET: static analysis and measurement-
based approaches. 

WCET analysis can be performed manually, but this approach is laborious, so automated 
WCET analysis tools are often used.

Static analysis vs. measurement-based approaches to WCET analysis

Two major approaches are used for worst-case execution time analysis: static analysis and 
measurement-based approaches.

In the static analysis approach, a model of the system’s hardware and software is generated 
and used to estimate* the worst-case execution time of software components. A major 
benefit of using this approach is that when a model is available, the analysis can be run 
automatically by verification tools, and that in this case there is no need to generate tests 
for software timing behavior. A major drawback is the need for a model of the system 
– if no model is available for the system, it can be difficult, time-consuming and costly 
to generate an accurate model. Model accuracy is also a factor – the more complex 
the system, the more costly and less feasible it is to generate an accurate model of the 
system. Furthermore, a system may demonstrate behavior that only occurs infrequently 
and is unlikely to be modelled, such as a system’s execution time being affected by the 
temperature of the hardware. 

For very complex systems such as multicore systems, it is infeasible to generate an 
accurate model. Worst-case execution time estimates from static analysis can also be very 
pessimistic – estimated worst-case execution times are the true* worst-case execution 
time of the software but they generally do not take into account factors that may reduce 
the actual worst-case execution time such as mutually exclusive paths in the code. As a 
result, estimated values may exceed the timing deadlines defined in requirements for the 
software.

* While the calculated worst-case execution time for each software component is a true worst-
case execution time for the model, it is intractable to create a model that accurately reflects any 
but the simplest system, so the real worst-case execution time will differ from that estimated from 
the model. 

As you’ll need to document the method by which you plan to analyze the  
worst-case execution time of your code in your DO-178C planning documents, 
you should evaluate methods early during your DO-178C planning. If you 
choose to use any automated analysis tools, you should also evaluate these 
early.

TIP

The Worst-case 

execution time 

(WCET) of a piece 

of software is the 

longest time that that 

piece of software 

could possibly take 

to execute. As such, if 

the WCET of a piece of 

software is lower than 

its timing deadline, 

that piece of software 

will execute before its 

deadline every time it 

executes.

Worst-case 
execution time



Efficient verification through the DO-178C life cycle  | page 44  

In the measurement-based approach, tests that exercise the software are run in an 
environment representative of the final flight system (on-target tests), and the timing 
behavior of the software is measured during these tests. The worst-case execution time 
of the software is then estimated± from the tests that take the longest time to run. Major 
benefits of this approach include that the results it generates are less pessimistic than 
those generated using a static analysis approach and that the results reflect the actual 
hardware environment. A major drawback is that extensive testing of the software must be 
done (and must be done on the target system, which may have limited availability) to use 
this method of testing. Another drawback is that as the results do not actually reflect the 
software’s pathological worst-case execution time±, they may be optimistic, yielding a value 
less than the actual worst-case execution time of the software. The better the testing, the 
more assurance that results are not optimistic.

± This method does not actually identify the worst-case execution time of software, but its high 
water mark execution time. The accuracy of the results depends on the quality of testing. Typically, 
engineers performing timing analysis using this method will apply a safety margin on top of any 
results generated using this method (e.g. add 20% to the calculated high water mark execution 
time to generate an estimated worst-case execution time).  

A hybrid approach can also be used that combines the best of the static analysis and 
measurement-based approaches. This approach, used by some commercial WCET tools 
such as RapiTime, uses results from both static analysis of the software and on-target 
testing to generate results that are not optimistic and are less pessimistic than those 
generated by static analysis approaches. In this approach, timing tests are run to generate 
a high water mark execution time, and the software’s control flow is then used to estimate 
a worst-case execution time from this. 

Sensible things to consider when selecting an approach to worst-case execution time 
analysis include the availability of a model for your system, the complexity of the system, 
and the experience and ability of your engineers to write code to optimize worst-case, 
rather than average case, timing behavior. 

Figure 14 – Worst Case Execution Time analysis report in RapiTime



page 45 | Efficient verification through the DO-178C life cycle

Manual vs. automated WCET testing

Worst-case execution time analysis can be performed entirely manually, or can be 
supported by the use of automated verification tools. 

Software worst-case execution time can be analyzed manually by developing and running 
a test suite that intends to exercise worst-case execution time behavior for the software 
(including considering variability in behavior across different execution paths through the 
code) and reviewing results. This can take a huge amount of time, the process is prone 
to human error, and if any changes are made to the code after the analysis is run, it may 
incur significant extra rework. For this reason, most companies working towards DO-178C 
compliance use automated verification tools to support the process, which significantly 
reduce the effort needed to analyze software execution time behavior regardless of 
whether they use a static analysis, measurement-based, or hybrid approach (see Static 
analysis vs. measurement-based approaches to WCET analysis on page 43). Regardless of 
whether WCET testing is done manually or supported through an automation tool, 
typically, a safety margin is added to recorded high-water mark execution times to provide 
additional assurance that the software will meet its timing deadlines.

Timing analysis on resource-limited systems

If you perform worst-case execution time analysis using an automated tool, your 
verification efficiency may be affected by the resources available on your system. This is 
because of the way that most worst-case execution time analysis tools work, by adding 
additional “instrumentation” code to your source code and then using a mechanism to 
store or capture additional data while your code runs. Limitations in the availability of the 
following resources may cause additional verification overheads:

• Code size – as most tools add additional code to “instrument” the native code, it may 
be possible that the tool cannot add instrumentation to all of your code at once, and 
you may need to split your analysis over multiple builds. 

• Memory – one method of collecting timing results on-target is to have data written 
to an area of memory and later output the data from this area of memory. If you use 
such a mechanism to collect timing results but do not have enough available memory 
to collect data for your entire code base at once, you may need to split your analysis 
over multiple builds, pause your software’s execution during testing to capture data 
before clearing the memory location so more data can be captured, or use a different 
method to collect data. 

• Bandwidth – another commonly used method to collect timing results on-target is 
to have timing data written to an external device such as a debugger or datalogger 
and collected on-the-fly. If your system is not capable of writing accurate and thread-
safe instrumentation data to an IO port fast enough, or capable of writing this data to 
the device capturing the data fast enough, you may need to split your analysis over 
multiple builds or use a different method to collect timing data.   

Two main approaches 

exist for automated 

timing analysis: 

techniques that apply 

instrumentation 

to source code to 

measure timing 

behavior during 

execution, and 

instrumentation-free 

approaches. The latter 

use methods such as 

interpeting branch 

traces collected 

from a platform 

during execution 

to understand the 

timing behavior of an 

application.

Zero instrumentation 
timing analysis



Efficient verification through the DO-178C life cycle  | page 46  

If you plan to use a commercial tool to perform worst-case execution time analysis, it 
makes sense to consider how well suited the tools you evaluate are in handling each of 
the limitations above, especially the ones you are likely to encounter on your system. The 
amount of additional code needed for instrumentation can vary greatly between different 
tools, so using some tools may reduce the number of builds you need to fully test your 
code. Across a project, this alone can make a huge difference in the cost of on-target 
testing. Some tools may include features that help you automatically apply partitions, 
reducing the effort needed to verify your entire code base. 

6.9  Verification of the verification process
DO-178C includes a range of verification objectives that are used to demonstrate that  
DO-178C processes, including the Verification process itself, have been followed 
appropriately throughout a DO-178C development project.

These objectives include, for example:

• Structural coverage analysis (see Structural coverage analysis on page 46), which 
demonstrates that the DO-178C software has been thoroughly tested such that it can 
be claimed that the software includes no unintended functionality

• Data coupling and control coupling coverage analysis (see Data and control 
coupling coverage analysis on page 55), which demonstrates that the data coupling 
and control coupling interfaces in DO-178C software have been sufficiently exercised 
during testing

These activities must be carried out by analyses or reviews. 

6.9.1 Structural coverage analysis

DO-178C requires evidence to demonstrate that the code has been covered by 
requirements-based testing. Either source code or object code can be tested, and each 
type of testing has its benefits and drawbacks, as described in Source code vs. object code 
structural coverage analysis on page 51.

The purpose of coverage (often called structural coverage to be distinguished from 
requirements coverage) testing is to ensure that an application has no unintended 
functionality.

The expectation when applying for DO-178C compliance is that 100% of the code has 
been executed during testing or that, in cases where this is not possible (e.g. for defensive 
code that cannot be executed under normal conditions), the reason this code is untested 
is justified.

As you’ll need to document the method by which you plan to verify the structural 
coverage of your software testing in your DO-178C planning documents, you 
should evaluate methods early during your DO-178C planning. If you choose to 
use any structural coverage analysis tools, you should also evaluate these early.

TIP



page 47 | Efficient verification through the DO-178C life cycle

Structural coverage can be analyzed at different granularities. The broadest granularity of 
analysis considers the proportion of functions in the code that have been called, while the 
narrowest granularity considers the proportion of conditions in the code that have been 
shown to independently affect the outcome in the decisions in which they occur. 

Structural coverage testing can be done manually, but this is a laborious process, so 
automated structural coverage analysis tools are often used. Coverage can either be 
tested at the source code or object code level, and each type of testing has benefits and 
drawbacks.

Structural coverage analysis in DO-178C

The need to perform structural coverage analysis for DO-178C compliance is listed in 3 
DO-178C objectives – 6.4.4.2, 6.4.4.2a and 6.4.4.2b (Table 3).

 
For DAL C, independence between the individuals implementing and verifying the code. 
For DALs A and B, independence is required for all structural coverage analysis activities. 

Objective Applicability (DAL) Output

ID Description Ref. A B C D Description Ref.

A-7, 5 Test coverage of 
software structure 
(modified condition/
decision) is 
achieved.

6.4.4.2  Software 
Verification 
Results

11.14

A-7, 6 Test coverage of 
software structure 
(decision coverage) 
is achieved.

6.4.4.2a

6.4.4.2b

  Software 
Verification 
Results

11.14

A-7, 7 Test coverage of 
software structure 
(statement 
coverage) is 
achieved.

6.4.4.2a

6.4.4.2b

   Software 
Verification 
Results

11.14

 
 Objective required at DAL 
  Objective required with independence at DAL

Table 3 - DO-178C objectives relating to structural coverage analysis (Source: RTCA DO-178C)



Efficient verification through the DO-178C life cycle  | page 48  

Granularities of structural coverage

DO-178C lists 3 different types of structural coverage analysis that may need to be 
performed, depending on the Design Assurance Level (DAL) of the tested application. 
These are:

• Statement Coverage – this analyzes whether statements in the code have been 
executed, and the overall coverage percentage indicates the proportion of statements 
that have been executed.

• Decision Coverage – this analyzes whether decisions in the code have been 
executed and observed to have both a true and false outcome, and the overall 
coverage percentage indicates the proportion of decisions that have been executed 
and observed to have both true and false outcomes.

• Modified Condition/Decision Coverage – this analyzes whether conditions in each 
decision in the code have been executed and shown to independently affect the 
outcome of the decisions in which they occur, and the overall coverage percentage 
indicates the proportion of conditions that have been executed and shown to 
independently affect the outcome of the decision in which they occur (see below).

 

Modified Condition/Decision Coverage

Modified Condition/Decision Coverage (MC/DC) is intended to ensure that each 
condition in every decision independently affects the outcome of that decision. 
As an example of how this works, consider making a cup of coffee. To make a 
cup of coffee, you’d need each of the following: a kettle, a cup and some coffee 
beans.   

(continued on next page)



page 49 | Efficient verification through the DO-178C life cycle

Sources of structural coverage

Structural coverage can be collected from system tests, integration tests, and lower level 
(component) tests, so long as each type of testing represents requirements-based tests. 
Higher level testing (such as system testing) generally produces more structural coverage 
per test than lower-level testing (such as component testing) does. As such, it is common 
practice to generate as much coverage as possible through higher-level tests before 
running lower-level tests to cover sections of the code that haven’t already been covered.

Testing on-host vs. on-target

DO-178C recommends that structural coverage analysis is performed on a target as 
representative of the final environment as possible, but this testing is likely to be expensive 
and not available until later stages of the project (see Testing on-host vs. on-target on page 
26). 

A sensible approach to structural coverage analysis is to develop and run tests on-host 
during the early stages of the project (see It may pay to start verification early on page 22), 
then repeat them on a Model A/B system (see Testing on-host vs. on-target on page 26) 
when the tests are complete and such a system is available. When collecting structural 
coverage results from system level tests, it may only be possible to do so in Model B or C 
environments as system tests need all devices in the system to be available.

 

Modified Condition/Decision Coverage (Continued)

Pairs of test vectors (shown below) can show that each condition (kettle, cup and 
coffee) independently affects the outcome of the decision:

• Tests 4 and 8 show that kettle independently affects the outcome

• Tests 6 and 8 show that cup independently affects the outcome

• Tests 7 and 8 show that coffee independently affects the outcome 

To fully test this code for MC/DC, you’d need to run tests 4, 6, 7 and 8. 



Efficient verification through the DO-178C life cycle  | page 50  

Manual vs. automated structural coverage analysis

Structural coverage can either be analyzed manually, or automatically by using a structural 
coverage analysis tool.

Structural coverage can be analyzed manually by following the execution trace of test 
runs of the code, analyzing the source code and the test steps needed to test the code, 
and marking every section of code that was covered. This can take a huge amount of 
time, the process is prone to human error, and if any changes are made to the code after 
the structural coverage analysis is run, it may incur significant extra rework, which some 
structural coverage analysis tools can mitigate through various features. Because of the 
above, most companies working towards DO-178C compliance use automated structural 
coverage analysis tools, which significantly reduce the effort needed to analyze structural 
coverage by automatically applying coverage instrumentation to code and analyzing the 
code segments that are executed during testing (see How coverage instrumentation works 
info box on page 51).

Structural coverage analysis tools can provide further benefits over manual analysis 
approaches:

• They often let you justify the reason that any untested code has not been tested and 
let you manage these justifications through an intuitive interface.  

• They usually let you automatically export your analysis results into a format that is 
appropriate for providing to a certification authority. 

• They may be able to integrate with continuous integration tools so you can automatically 
collect coverage results with every build.  

• They can significantly reduce the number of tests you need to run to reverify your 
code if it changes through features such as merging results from multiple reports and 
code change analysis.

Using a tool to perform structural coverage analysis is generally preferred for  
DO-178C compliance as functional testing is a highly computational activity and 
the analysis must typically be repeated. When evaluating structural coverage 
analysis tools, it makes sense to consider the following:

• Does the tool let you mark sections of your code as covered by manual 
analysis?

• Will the tool integrate with your existing system, or do you need to modify your 
system to use it?

• Can the tool help you merge results from different tests and builds?

• Does the tool integrate with any continuous integration tools you are using so 
you can view your results throughout your project?

• Is the tool qualifiable for DO-178C, and are any tool features you may want to 
use qualifiable (if needed)? 

TIP



page 51 | Efficient verification through the DO-178C life cycle

Source code vs. object code structural coverage analysis

 

How coverage instrumentation works

Coverage instrumentation works by adding instrumentation code to the original 
code, such that coverage results can be collected when specific areas of the 
code are reached during execution. Instrumentation code may support data 
collection through different means depending on the execution environment, 
such as writing results to a file for on-host testing or writing results to an 
on-target buffer for on-target testing. Returning to our previous cup of coffee 
example from the Modified Condition/Decision Coverage info box on pages 48 and 
49), here’s how the code would look when instrumented for statement, decision 
and MC/DC coverage analysis.

In this example, the instrumentation at [stmnt_instr_1] and  
[stmnt_instr_2] instruments the code for statement coverage. As this 
instrumentation occupies both true and false branches of the decision, if both 
statements are observed to execute, this also implies that the decision has 
been covered. The instrumentation at [mcdc_instr_1], [mcdc_instr_2] 
and [mcdc_instr_3] allows Modified Condition/Decision coverage of the 
decision to be determined.  

There are benefits to both source code and object code structural analysis, 
but source code analysis is used much more often in DO-178C projects. When 
selecting a methodology to collect coverage results, you should consider:

• Whether you have access to source code for all of the software in your project.

• Whether your hardware environment supports coverage analysis without 
needing to apply instrumentation to the code.

• The DAL of your software – for DAL A software, if you perform coverage 
analysis on object code, you will need to provide additional evidence to show 
that any additional code introduced by your compiler has been verified.

TIP



Efficient verification through the DO-178C life cycle  | page 52  

Structural coverage analysis can be performed on the source code, the object code, or 
both. There are benefits and drawbacks to both types of analysis. 

Coverage analysis is most often performed on source code, especially when using 
automated tools for the analysis. One major benefit of analyzing source code is that 
this often makes it easier to modify tests to produce 100% coverage (though these tests 
should still be written to test any relevant requirement(s), not just to produce coverage!) 
– while most testers can analyze source code to improve tests, this is not necessarily the 
case for object code. Another benefit is that most structural coverage analysis tools are 
designed to analyze source code and can’t analyze object code, and using these tools can 
significantly reduce effort as we saw in Manual vs. automated structural coverage analysis on 
page 50. A major drawback of source code coverage analysis is that the typical approach of 
instrumenting the source code to collect coverage results can necessitate running multiple 
builds, especially for resource-limited systems (see Coverage analysis on resource-limited 
systems on page 52). 

Object code structural coverage analysis is performed less often than source code 
coverage analysis in the aerospace industry. A major benefit of this type of analysis is that 
it can be performed even when there is no access to source code (for example if you are 
using a third-party library for which you don’t have access to source code). Another benefit 
is that some methods for object code coverage analysis do not require instrumentation of 
the code, allowing testing of unmodified code. These methods typically impose restrictions 
on compatible hardware environments, however. A major drawback of this type of analysis 
is that if you choose to analyze coverage of object code, you will need to demonstrate that 
your analysis provides the same level of confidence that you would get from analysis at the 
source level.  Further guidance on this was given in the CAST-12 position paper. Another 
drawback is that less support is available from commercial tool vendors to perform 
coverage analysis of object code as most structural coverage analysis tools cannot do this. 

Regardless of whether you perform structural coverage analysis against source code or 
object code, if you are working on a DAL A development, you will need to provide additional 
evidence to show that any additional code introduced by your compiler has been verified 
(see Verifying additional code introduced by compilers on page 54).

Coverage analysis on resource-limited systems

If you perform structural coverage analysis using an automated tool, your verification 
efficiency may be affected by the resources available on your system. This is because 
of the way that most structural coverage analysis tools work, by adding additional 
“instrumentation” code to your source code and then using some mechanism to store or 
capture additional data while your code runs.



page 53 | Efficient verification through the DO-178C life cycle

Limitations in the availability of the following resources may cause additional verification 
overheads:

• Code size – as most tools add additional code to “instrument” the native code, it may 
be possible that the tool cannot add instrumentation to all of your code at once, and 
you may need to split your analysis over multiple builds. 

• Memory – a commonly used method to collect structural coverage results on-target 
is to have coverage data written to an area of memory and later output the data from 
this area of memory. If you use such a mechanism to collect coverage results but 
do not have enough available memory to collect data for your entire code base at 
once, you may need to split your analysis over multiple builds, pause your software’s 
execution during testing to capture data before clearing the memory location so more 
data can be captured, or use a different method to collect coverage data. 

• Bandwidth – another commonly used method to collect coverage results on-target is 
to have coverage data written to an external device such as a debugger or datalogger 
and collected on-the-fly. If your system is not capable of outputting data fast enough, 
you may need to split your analysis over multiple builds or use a different method to 
collect coverage data.  

If you plan to use a commercial tool to perform structural coverage analysis, it makes sense 
to consider how well suited the tools you evaluate are in handling each of the limitations 
above, especially the ones you are likely to encounter on your system. The amount of 
additional code needed for instrumentation can vary greatly between different tools, 
so some tools may require you to run fewer builds than others. Across a project, this 
alone can make a huge difference in the cost of on-target testing. Some tools may include 
features that help you automatically apply partitions, reducing the effort needed to verify 
your entire code base. 

If you do need to run your analysis across multiple builds, it pays to consider how the tools 
you are evaluating can help you combine those results into a single report that you can 
analyze and provide to your certification authority. Some tools may include features to 
combine results, while some may not. For tools that do include such features, the result 
merging feature may or may not be included in the qualification kits provided by the tool 
vendor. If it isn’t,  you would either need to qualify the feature yourself or not use it for your 
final run for score (see Qualifying verification tools (DO-330) on page 60).

Structural coverage resolution

If your project is DAL C or above, you will need to provide evidence that your requirements-
based testing and analysis has covered or justified 100% of your code. Most code should 
be coverable by requirements-based tests, but often some code cannot be, or cannot 
easily be, covered by such tests. Some causes of untestable, or not easily testable code, 
include:

• Coding standard – your coding standard may require the use of untestable coding 
structures such as default case statements that can never be executed, or destructors. 

Two main approaches 

exist for automated 

coverage analysis: 

techniques that apply 

instrumentation 

to source code to 

measure coverage 

achieved during 

test execution, and 

instrumentation-free 

approaches. The latter 

use methods such as 

interpeting branch 

traces collected 

from a platform 

during execution to 

measure the coverage 

achieved. Thus, they 

analyze the object 

code rather than 

source code for an 

application.

Zero instrumentation 
coverage analysis



Efficient verification through the DO-178C life cycle  | page 54  

• Programming language – your choice of programming language may lead to the 
generation of code structures that cannot be executed, such as default base class 
implementations in object-oriented programming languages.

• Defensive programming – some code may only be executable in fault conditions 
that cannot be tested. Typically, you will need to provide a rationale for this defensive 
code in your Software Coding Standards.

• Unused library code – a general-purpose library may include routines that are never 
called during your tests.

• Initialization code and shutdowns – some code executes before you can set up 
the testing environment, making it difficult to test directly. Other tests may need to 
invoke resets of the target hardware during the test (e.g. to check that non-volatile 
memory is used correctly on a warm restart first pass), making it hard to record test 
successes and associated structural coverage.

To comply with DO-178C guidance, a justification must be provided for any code that 
hasn’t been tested at the relevant coverage granularities for the DAL. This activity must 
include a manual component, but it can be supported by features of commercial structural 
coverage analysis tools that let you assign a rationale for why specific sections of code 
cannot be tested and export these results along with those for coverage achieved through 
testing. This applies across all types of source structural coverage (function entry and 
function exit, decisions, statements, and MC/DC).

Even in the best planned DO-178C project, implementation changes are often needed 
after initial rounds of verification, when these justifications are often applied. A major 
consideration when planning how you will handle untestable code is how much extra 
effort implementation changes will cause. Some commercial structural coverage analysis 
tools include features that can mitigate the extra effort needed by helping you migrate any 
justifications that still apply to the new location in your code and automatically discarding 
justifications that no longer apply.   

Verifying additional code introduced by compilers

If you are working on a DAL A project, you need to verify any additional code 
introduced by your compiler. Hence, it makes sense to mitigate the effort needed 
to verify additional code introduced by your compiler by:

• Investigating the behavior of your compiler given a range of compiler options 
and programming language constructs that you expect you may want to 
include in your project. This is known as compiler verification, and verification 
services suppliers may be able to help you with the investigation.

• Having completed this investigation, selecting programming language 
standards that limit the generation of additional code by compiler.

TIP

Structural coverage 

analysis tools can 

help with structural 

coverage resolution 

by letting users 

apply justifications 

to areas of the code 

that haven’t been 

tested. Tools such as 

RapiCover can also 

help reduce review 

effort when code 

changes by supporting 

the migration of 

justifications to new 

code elements.

Justifications for 
coverage resolution



page 55 | Efficient verification through the DO-178C life cycle

Compilers transform source code into equivalent object code. Along the way, they can 
add and remove code as needed. For example, they can perform optimizations to make 
best use of the facilities offered by the target CPU and platform, which typically removes 
branches, avoids repeated calculations, or creates copies of object code (inlining) instead 
of creating calls to existing object code. Compilers can also add new code structures that 
have no equivalent in the original source code. For example, additional code may be 
generated that includes loops to copy data in and out of functions, decision structures for 
array bounds checking, or calls to library functions to implement operators (e.g. modulus) 
that are not supported in a CPU’s native instruction set.

If your software is DAL A, then you must verify the correctness of any additions made 
to your code by your compiler. This is covered in objective 6.4.4.2.b of DO-178C. Such 
verification can include analysis, review, and testing as necessary:

• Analysis: to identify the combinations of code constructs and compiler options that 
you use that lead to the insertion of additional code. This typically involves extensive 
review of the object code generated from sample input source files. Based on this 
analysis, you may decide to update your coding standard to limit the use of some 
language constructs. Accordingly, you should perform this analysis early on to ensure 
that you are aware of the behavior of your compiler environment before verification 
begins in earnest.

• Review: for example, to identify whether you are following your coding standard and 
keeping the analysis up to date whenever you change compiler settings, or to show 
that all added code falls into the categories that you identified in your analysis.

• Testing: to demonstrate the correctness of the generated additional code structures 
that are still present in the object code. This involves derivation of suitable testing 
criteria depending on the nature of the additional code. For example, if the compiler 
uses a library to implement the modulus operator, you could provide additional 
testing of the library implementations and use an equivalence-class test design to 
derive appropriate test cases.

Verification specialists may be able to help with all three aspects of verifying additional 
object code.

6.9.2 Data coupling and control coupling coverage analysis

DO-178C requires evidence that the data coupling and control coupling interfaces in 
software have been tested. As we saw in Considering data coupling and control coupling 
on page 17, data coupling interfaces and control coupling interfaces are points in the 
code at which one component provides data to, or affects the choice to execute, another 
component. DO-248C: Supporting Information for DO-178C and DO-278A provides the 
following definitions for data coupling and control coupling, defining:

• Data coupling as “The dependence of a software component on data not exclusively 
under the control of that software component.”

• Control coupling as “The manner or degree by which one software component influences 
the execution of another software component.”



Efficient verification through the DO-178C life cycle  | page 56  

Data coupling and control coupling coverage are metrics of the completeness of testing 
of data coupling and control coupling interfaces in the software. By demonstrating that 
your testing has exercised 100% of the data coupling and control coupling interfaces in 
the software architecture, you are also demonstrating the sufficiency of your software-
software and hardware-software integration testing.

Data coupling and control coupling coverage analysis in DO-178C 

The need to analyze coverage of data coupling and control coupling interfaces is listed in a 
single DO-178C objective – 6.4.4.d (Table 4).

This  objective applies to DAL A-C systems, and the analysis should be with independence 
for DAL A and B systems.

As you’ll need to document the method by which you plan to verify the data 
coupling and control coupling coverage you have achieved of your code in your 
DO-178C planning documents, you should evaluate methods early during your 
DO-178C planning. If you choose to use any automated analysis tools to produce 
coupling coverage results, you should also evaluate these early.

TIP

Objective Applicability (DAL) Output

ID Description Ref. A B C D Description Ref.

A-7, 8 Test coverage of 
software structure 
(data coupling and 
control coupling) is 
achieved.

6.4.4.d    Software 
Verification 
Results

11.14

 
 Objective required at DAL 
  Objective required with independence at DAL

Table 4 - DO-178C objectives related to data coupling and control coupling coverage  
 (Source: RTCA DO-178C)



page 57 | Efficient verification through the DO-178C life cycle

Testing data coupling and control coupling coverage

For DO-178C compliance, you need to ensure that your requirements-based testing has 
exercised 100% of the data coupling and control coupling interfaces in your code.

To make your data coupling and control coupling coverage analysis efficient, it is important 
to include relevant interface requirements in your software architecture description 
(see Considering data coupling and control coupling on page 17). These requirements 
describe the control (including sequencing, timing and concurrency) and data interchange 
dependencies between components. This will make it easier to write requirements for 
both normal range and robustness testing (see Requirements-based functional testing on 
page 33) that test the interfaces in your code. You can then collect coverage results during 
these tests to demonstrate that the data coupling and control coupling interfaces in your 
code are exercised during them. Typically, this will involve analyzing statement coverage of 
relevant read/write and procedure call statements.

Data coupling and control coupling coverage analysis can be achieved manually or can be 
supported by the use of automated tools. If you use an automated tool to support your 
data coupling and control coupling coverage analysis, you should ensure that the tool is 
flexible and able to adapt to the way you have mapped between your requirements and 
software. 

6.10 Verifying multicore systems: 
 A(M)C 20-193/CAST-32A

Multicore systems are becoming more widely adopted in DO-178C projects. There is a 
major drive to move towards using them for two major reasons:

• Their improved size, weight and power (SWaP) characteristics allow system developers 
to add more functionality to systems per unit volume, satisfying the increasing 
expectations of the industry.

• It is slowly becoming more difficult to source single core processors as the majority of 
the wider embedded software industry has moved towards using multicore processors 
due to their better SWaP characteristics. 

While using multicore systems offers great benefits, it also necessitates additional 
verification activities (and additional planning activities) to meet the design assurance 
required for DO-178C certification. 

The key to efficient data coupling and control coupling coverage analysis is defining 
data coupling and control coupling interfaces with enough information with which 
to write test cases to test those interfaces in your requirements-based tests. You 
can then satisfy the objective for data coupling and control coupling coverage 
analysis by analyzing the coverage you achieve during your tests.   

TIP

5 https://www.faa.gov /aircraft/air_cert/design_approvals/air_software/cast/media/cast-32A.pdf
6A(M)C refers to either EASA AMC (Acceptable Means of Compliance) or FAA AC (Advisory Circular) 
documents.



Efficient verification through the DO-178C life cycle  | page 58  

While DO-178C itself offers no specific guidance on the use of multicore systems 
(they were rarely if ever used in DO-178C applications when DO-178C launched), 
it has been addressed in supplementary documents. First, supplementary 
guidance was given in CAST-32A5. This guidance is due to be superseded by  
A(M)C6  20-193 in 2021. 

6.10.1 Additional activities required by CAST-32A

CAST-32A lists 10 additional objectives that should be followed when developing DO-178C 
software hosted on multicore systems. The first 2 objectives relate to additional planning 
activities:

• MCP_Planning_1 – this objective requires that the multicore system (hardware and 
RTOS) is described and that development and verification methodologies are planned.

• MCP_Planning_2 – this objective requires that the shared resources in the multicore 
system are identified along with any methods used to mitigate interference effects 
from contention on those resources. It also requires the identification of any active 
dynamic hardware features used on the multicore system such as DVFS.

The remaining 8 objectives listed in the document relate to verification activities: 

• MCP_Resource_Usage_1 – this objective requires that the critical configuration 
settings used in the multicore system are identified and documented. 

• MCP_Resource_Usage_2 – this objective requires an analysis to be run on the 
impact of inadvertent changes to the critical configuration settings of the multicore 
system occurring, and for a verification mechanism that mitigates such changes to be 
developed.

• MCP_Resource_Usage_3 – this objective requires that the interference channels 
through which software execution time on the multicore system can be affected are 
identified.

• MCP_Resource_Usage_4 – this objective requires that the resources on the multicore 
system are verified to meet requirements on timing behavior and that any mechanisms 
used to mitigate the possibility of exceeding these requirements are verified.

• MCP_Software_1 – this objective requires the execution time of the multicore 
software to be verified through worst-case execution time analysis (this is in addition to 
the verification needed for all DO-178C projects, see Worst-case execution time analysis 
on page 43, and the objective provides additional guidance on how to perform this 
analysis).

• MCP_Software_2 – this objective requires the data coupling and control coupling 
of the multicore system to be verified (this is in addition to verification of the data 
coupling and control coupling needed for all DO-178C projects, see Data coupling and 
control coupling coverage analysis on page 55).

• MCP_Error_Handling_1 – this objective requires the error handling mechanisms in 
the multicore system to be verified.



page 59 | Efficient verification through the DO-178C life cycle

• MCP_Accomplishment_Summary – this objective requires evidence from the 
verification activities above to be incorporated into a Software Accomplishment 
Summary (Documenting verification results on page 29) so as to describe how each  
CAST-32A objective was met. 

Worst-case execution time analysis of the multicore software will in most cases be the 
most challenging and time and resource-consuming activity when complying with  
CAST-32A guidance. While the timing behavior of single core systems is deterministic, the 
timing behavior of multicore systems is non-deterministic as it is affected by interference 
as separate cores access shared resources (see below).

6.10.2 What’s in store for A(M)C 20-193?

While A(M)C 20-193 has not yet been published, the objectives of the new document are 
expected to largely follow the guidance provided in CAST-32A, while also providing insight 
from the certification authorities on approaches that can be used to comply with the 
objectives.

 

Multicore interference

Multicore interference occurs when the execution characteristics (such as 
execution time) of software hosted on a single core of a multicore platform is 
affected by what is happening on other cores. This can be due to, for example, 
one core needing to access a shared resource that is currently in use from 
a task running on another core. Multicore interference makes execution 
of software non-deterministic and can greatly impact software execution 
characteristics including timing behavior. 

Figure 15 – Multicore interference affects software execution characteristics – the 
execution of tasks running on Cores 1-3 can be affected by Core 0, which is currently 

using the shared L2 cache 



Efficient verification through the DO-178C life cycle  | page 60  

6.10.3 Complying with CAST-32A / AM(C) 20-193

Due to the challenging nature of compliance with CAST-32A objectives, the large number 
of tests that must be run for compliance, and uncertainty in the scope of how much testing 
must be performed, compliance with the additional objectives needed to follow CAST-32A 
can be very expensive. Due to this high potential cost, it pays to make multicore verification 
as efficient as possible.

As is the case with single core systems, decisions on which hardware to use will have an 
impact on the cost of multicore certification. In recent years, silicon manufacturers, board 
suppliers and RTOS vendors have been developing and commercializing new mechanisms 
that can help to mitigate the effects of multicore interference. 

The design decisions you make will also affect the worst-case execution time and 
predictability of timing behavior of your software. This includes, for example, your 
allocations of software functionality into components and of hardware I/O communication 
into software components. 

Worst-case execution time analysis is likely the most challenging part of  
CAST-32A / A(M)C 20-193 compliance. You will need to evaluate potential methods of 
doing this analysis early in your DO-178C project. In recent years, methods have arisen 
to perform this analysis, which use interference-generating applications to stress specific 
shared resources on the multicore system so “worst-case” timing behavior can be analyzed.  

6.11  Qualifying verification tools (DO-330)

If you begin a multicore DO-178C project and need to comply with  
CAST-32A / AM(C) 20-193, it makes sense to consider the following:

• How can your choice of hardware and RTOS help you mitigate interference?

• How will you design your software architecture to mitigate interference?

• How will you perform worst-case execution time analysis on your multicore 
system?

TIP

As you’ll need to describe how you plan to qualify any tools you use that replace 
or mitigate DO-178C processes and for which you don’t manually verify the output 
in your Plan for Software Aspects of Certification (PSAC), you should consider 
tool qualification early during your DO-178C planning. If you plan to use any 
commercial verification tools that need to be qualified, you would benefit from 
finding out whether qualification kits are available for them. 

TIP

You can learn 

more about CAST-

32A objectives 

and strategies for 

multicore verification 

at rapitasystems.com/

cast-32a.

Discover multicore 
verification

http://rapitasystems.com/cast-32a
http://rapitasystems.com/cast-32a


page 61 | Efficient verification through the DO-178C life cycle

As per DO-178C, you need to qualify any software tool you use that replaces or mitigates 
any DO-178C process and for which the output is not manually verified. The qualification 
process ensures that such software tools can be relied upon to produce appropriate and 
repeatable results.

DO-178C itself describes when a tool must be qualified, but does not go into detail on how 
this should be done. The DO-330: Software Tool Qualification Considerations7  supplement 
to DO-178C expands on this guidance by defining corresponding objectives for the 
specification, development and verification of qualified tools.

6.11.1 Tool qualification levels

DO-178C defines 3 sets of tool assessment criteria which, when combined with the DAL 
level of your software, are used to classify tools at one of 5 different Tool Qualification 
Levels (TQLs) as shown in Table 5.

For example, a code generator tool that converts an architectural description of the 
software into package or class structures fulfils criteria 1. Verification tools typically fall 
into Criteria 3 (and are thus classified at TQL-5) as they neither create airborne software 
nor eliminate or reduce any processes other than the ones for which they are intended. 
Criteria 2 typically applies in cases such as model-based testing with a qualified code 
generator. In this case, the task of verifying the generated code is eliminated or reduced in 
favor of testing the model, and so the model-based testing tool meets criteria 2.

Criteria
DAL

A B C D

Criteria 1:

• output is part of the airborne software

• could insert an error

TQL-1 TQL-2 TQL-3 TQL-4

Criteria 2:

• could fail to detect an error

• elimination or reduction of other processes

TQL-4 TQL-4 TQL-5 TQL-5

Criteria 3:

• could fail to detect an error

TQL-5 TQL-5 TQL-5 TQL-5

7The DO-330 document is available for purchase from various sources online, including https://standards.
globalspec.com/std/1461615/RTCA%20DO-330

Table 5 - Assessment criteria for tool qualification levels (Source: RTCA DO-330)



Efficient verification through the DO-178C life cycle  | page 62  

6.11.2 Tool qualification for commercial tools

If you use any commercial verification tools to automate DO-178C verification processes 
and don’t plan on manually reviewing output from the tools, they will need to be qualified 
at the appropriate tool qualification level.

DO-330 defines some tool qualification activities that must be performed by the tool 
developer and some that must be performed by the tool user (you).

Many commercial verification tools have supporting qualification kits, which include 
evidence needed to demonstrate that the activities the tool developer must perform have 
been performed. Generally, not all features of verification tools are qualified. For each 
feature you intend to use and for which the way you intend to use it would require tool 
qualification, you should check with the tool developer whether the feature is included in 
the qualification kit. All qualification kits should include all of the evidence needed from the 
tool developer. Some qualification kits may also include supporting material to help meet 
tool user objectives. It may pay to ask tool vendors what the scope of their qualification kits 
is and how they can help you qualify the tool.

6.12  The Verification milestone (SOI#3)
Similarly to SOI#2, SOI#3 should be conducted with the certification authority when there 
are examples of each of the verification artifacts available for review. SOI#3 focuses not 
only on test cases and test procedures, but also on test results and coverage analyses (see 
Requirements-based functional testing on page 33 and Structural coverage analysis on page 
46).

You do not need to complete the verification of your software before SOI#3, but this 
milestone is usually reached after:

• Around half or more of the total expected test cases and procedures have been 
developed and reviewed

• The approach you’ll take for verifying your verification process (e.g. structural coverage, 
data coupling and control coupling coverage) is demonstrable (ideally with at least 
sample data being available)

If you plan to use commercial verification tool(s), you should consider:

• Is a qualification kit available for the tool?

• Are all of the tool features that you want to use included in the tool qualification 
kit?

What additional support and services are available to help complete the tool user 
activities?

TIP



page 63 | Efficient verification through the DO-178C life cycle

• The approach you’ll take for verifying non-functional properties of your software, 
including resource usage, is demonstrable (ideally with at least sample data being 
available)   

Similarly to SOI#2, the review will examine traceability information and also examine how 
changes have been managed throughout the life cycle of your project.

6.13  The final run for score

As you approach the end of the Verification stage of your project, you’ll need to prepare 
for your final run for score, which will produce comprehensive verification results and 
compliance evidence for your final software baseline in the context of your final product. 
This means that the test environment should be the same as the final flight system, 
including all hardware and with all software components integrated. The final run for score 
is typically performed after the Verification milestone (SOI#3), but is necessary to produce 
the compliance artifacts you’ll need for certification. 

The most efficient strategy when preparing for the final run for score is to ensure that 
when you go ahead with it, you’ll collect all of the results you need to. This includes results 
for all of your requirements-based tests and the evidence you need to show that you have 
achieved 100% data coupling and control coupling coverage and structural coverage of 
your final code (through either tests or manual analysis and justification) at the required 
coverage granularities for your DAL. 

Your requirements-based test results should be collected from the final code as it will be 
written in your product. This means that, if you have instrumented your code to support 
coverage analysis, you will need to run your requirements-based tests on code that has 
not been instrumented and collect your coverage results separately.  

As you prepare for your final run for score, you should ensure that all of your 
requirements-based tests are passing and that you have 100% coverage. Doing 
so will make your final run for score go more smoothly.

TIP

For large projects, 

running a final 

“run for score” may 

take weeks or even 

months.

Did you know?



Efficient verification through the DO-178C life cycle  | page 64  

The final SOI is the Certification review (SOI#4). This review 
typically follows the Quality Assurance Conformity Review and 
is focused on ensuring all compliance evidence is complete 
and correct. 

A fundamental part of each of the SOI reviews is an examination of the configuration 
management processes and baselines and the evidence that quality assurance has been 
active during the design assurance process. SOI#4 looks back at each of the previous 
SOI reviews and ensures that all observations and findings have been resolved to the 
satisfaction of the certification authority. The review also ensures that the final design and 
deliverable documentation are complete and correct with respect to the design baseline 
(see Baselines on page 9). 

SOI#4 is more than just a double-check of the release baseline – it is a detailed examination 
of all the development and verification artifacts to ensure that a complete and consistent 
design baseline is documented. This may involve the certification authority asking to see 
you building and loading a specific baseline, running tests against that baseline to produce 
the same results you reported previously, and performing desk reviews of documents and 
face to face audits. During the SOI, you may be asked to re-review any artifact or evidence 
produced during the whole life cycle of your project, so it’s important to make sure that 
all of your life cycle data is kept up to date with the current baseline through all stages of 
development and verification.  

7. The Certification milestone 
(SOI#4)



page 65 | Efficient verification through the DO-178C life cycle

Rapita Systems provides on-target software verification tools and services to the embedded 
aerospace and automotive electronics industries. Its solutions help to increase software 
quality, deliver evidence to meet safety and certification objectives (including DO-178C) and 
reduce project costs. With offices in the UK and US, it serves its solutions globally.

Daniel Wright
Technical Marketing Executive

Daniel’s roles at Rapita Systems include creating and curating technical marketing 
content, including collateral, blogs and videos, and capturing and maintaining 
data that is used to further develop Rapita’s verification solutions to best meet 
the needs of the global aerospace market. Daniel received a PhD in Structural 
Biology from the University of York in 2016.

Zoë Stephenson
Head of Software Quality

Zoë has over a decade of experience in developing and delivering 
DO-330 tool qualification evidence for Rapita’s flagship verification 
solution, the Rapita Verification Suite (RVS), as well as experience 
managing verification projects including compiler verification.  
Zoë received a PhD in Computer Science from the University of York in 2002 and 
has worked on academic research projects with a number of industrial partners 
including Esterel, BAE Systems, Rolls-Royce, Goodrich Control Systems and Aero 
Engine Controls.

8. The Authors



Efficient verification through the DO-178C life cycle  | page 66  

ConsuNova is a leading global provider of certification, compliance engineering services 
and solutions for safety-critical systems to the aerospace and defense industries. 
It provides fast, optimized and cost-effective solutions for ARP 4761, ARP 4754A,  
DO-200B, DO-254 and DO-178C compliance, including gap analysis, process optimizations and 
DER or CVE services, compliance liaison services, compliance training courses and template 
documents and checklists for certification.

Martin Beeby
Head of Advanced Avionics Systems

Martin has been working in Software, Hardware, and Systems development for 
over 30 years. He has worked on a wide range of avionics applications including 
Engine Controllers, Display Systems, Communication Systems and Cabin Systems. 
He also participates in industry working groups developing new guidance and 
was part of the working group that defined DO-178C. 

 

Get in touch with Rapita Systems 

rapitasystems.com

info@rapitasystems.com

+1 248-957-9801 (US)
+44 (0)1904 413945 (int.)

 

Get in touch with ConsuNova

consunova.com

team@consunova.com

+1 858-444-6762



S U P P O R T I N G  C U S T O M E R S  W I T H :

rapitasystems.com

linkedin.com/company/rapita-systems

info@rapitasystems.com

Contact
Rapita Systems Ltd. 
Atlas House 
York, UK 
YO10 3JB

+44 (0)1904  413945

Rapita Systems, Inc. 
41131 Vincenti Ct. 
Novi, Mi, 48375 
USA

+1 248-957-9801

Multicore verification

CAST-32A Compliance

Multicore Timing Solution

Services

V&V Services

Integration Services

Qualification

SW/HW Engineering

Compiler Verification

Tools

Rapita Verification Suite:

RapiTest

RapiCover

RapiTime

RapiTask

About Rapita
Rapita Systems provides on-target software verification tools and services globally to 
the embedded aerospace and automotive electronics industries.

Our solutions help to increase software quality, deliver evidence to meet safety and 
certification objectives and reduce costs.

Find out more
A range of free high-quality materials are available at: 
rapitasystems.com/downloads

http://www.rapitasystems.com
http://www.linkedin.com/company/rapita-systems
mailto:?subject=info%40rapitasystems.com

