Your browser does not support JavaScript! Skip to main content
Free 30-day trial DO-178C Handbook RapiCoupling Preview DO-178C Multicore Training Multicore Resources
Rapita Systems
 

Industry leading verification tools

Rapita Verification Suite (RVS)

RapiTest - Functional testing for critical software RapiCover - Low-overhead coverage analysis for critical software RapiTime - In-depth execution time analysis for critical software RapiTask - RTOS scheduling visualization RapiCoverZero - Zero-footprint coverage analysis RapitimeZero - Zero-footprint timing analysis RapiTaskZero - Zero-footprint event-level scheduling analysis RVS Qualification Kits - Tool qualification for DO-178 B/C and ISO 26262 projects RapiCoupling - DCCC analysis

Multicore Verification

MACH178 - Multicore Avionics Certification for High-integrity DO-178C projects MACH178 Foundations - Lay the groundwork for A(M)C 20-193 compliance Multicore Timing Solution - Solving the challenges of multicore timing analysis RapiDaemon - Analyze interference in multicore systems

Other

RTBx - The ultimate data logging solution Sim68020 - Simulation for the Motorola 68020 microprocessor

RVS Software Policy

Software licensing Product life cycle policy RVS Assurance issue policy RVS development roadmap

Industry leading verification services

Engineering Services

V&V Services Data Coupling & Control Coupling Object code verification Qualification Training Consultancy Tool Integration Support

Latest from Rapita HQ

Latest news

Rapita partners with Asterios Technologies to deliver solutions in multicore certification
SAIF Autonomy to use RVS to verify their groundbreaking AI platform
RVS 3.22 Launched
Hybrid electric pioneers, Ascendance, join Rapita Systems Trailblazer Partnership Program
View News

Latest from the Rapita blog

How emulation can reduce avionics verification costs: Sim68020
Multicore timing analysis: to instrument or not to instrument
How to certify multicore processors - what is everyone asking?
Data Coupling Basics in DO-178C
View Blog

Latest discovery pages

Military Drone Certifying Unmanned Aircraft Systems
control_tower DO-278A Guidance: Introduction to RTCA DO-278 approval
Picture of a car ISO 26262
DCCC Image Data Coupling & Control Coupling
View Discovery pages

Upcoming events

DASC 2025
2025-09-14
DO-178C Multicore In-person Training (Fort Worth, TX)
2025-10-01
DO-178C Multicore In-person Training (Toulouse)
2025-11-04
HISC 2025
2025-11-13
View Events

Technical resources for industry professionals

Latest White papers

Mitigation of interference in multicore processors for A(M)C 20-193
Sysgo WP
Developing DO-178C and ED-12C-certifiable multicore software
DO178C Handbook
Efficient Verification Through the DO-178C Life Cycle
View White papers

Latest Videos

How to make AI safe in autonomous systems with SAIF
Rapita Systems - Safety Through Quality
Simulation for the Motorola 68020 microprocessor with Sim68020
AI-driven Requirements Traceability for Faster Testing and Certification
View Videos

Latest Case studies

GMV case study front cover
GMV verify ISO26262 automotive software with RVS
Kappa: Verifying Airborne Video Systems for Air-to-Air Refueling using RVS
Supporting DanLaw with unit testing and code coverage analysis for automotive software
View Case studies

Other Resources

 Webinars

 Brochures

 Product briefs

 Technical notes

 Research projects

 Multicore resources

Discover Rapita

Who we are

The company menu

  • About us
  • Customers
  • Distributors
  • Locations
  • Partners
  • Research projects
  • Contact us
  • Careers
  • Working at Rapita

Industries

  Civil Aviation (DO-178C)   Automotive (ISO 26262)   Military & Defense   Space

US office

+1 248-957-9801
info@rapitasystems.com Rapita Systems, Inc., 41131 Vincenti Ct., Novi, MI 48375, USA

UK office

+44 (0)1904 413945
info@rapitasystems.com Rapita Systems Ltd., Atlas House, Osbaldwick Link Road, York, YO10 3JB, UK

Spain office

+34 93 351 02 05
info@rapitasystems.com Rapita Systems S.L., Parc UPC, Edificio K2M, c/ Jordi Girona, 1-3, Barcelona 08034, Spain
Back to Top Contact Us

DO-178C - Stage of Involvement 2

2022-03-09

SOI #2 - Development Review

After SOI #1, the next step is to develop your product. The first step in Development is to define the high-level requirements of your code. Later in Development, you will define low-level requirements. Developing high-level requirements involves refining the context of system requirements allocated to software and defining any software-specific requirements that do not map to system requirements as derived requirements. While defining both high and low-level requirements, you should ensure that you follow the processes you agreed to follow in your PSAC – your certification authority is likely to check that you have done so during future SOIs.

DO-178 Development Review

When your requirements are available, the next step is to design the architecture of your software and define its low-level requirements in order to define a system that can meet the high-level requirements you have identified. Design in DO-178C is the combination of architecture and low-level requirements. You will need to follow the design standards you said you would follow in your PSAC and provide evidence that you have done this.

When your requirements and design are ready, the next step will be to implement your product in code. This is comparatively only a small part of the overall compliance process, usually taking 5% or less of overall effort. The decisions you make on how to implement your product can have major effects on your verification later on. These can make your verification much easier or much more difficult, and as a result cause your project to either run smoothly or incur delays. As verification takes much more effort than implementation, it’s worth considering the effects your decisions will have and making decisions that will reduce your verification effort.

Here are a few things you may want to consider:

  • Choice of programming language(s)
  • Choice of coding standard(s)
  • Choice of hardware platform and operating system
  • Choice of compiler and compiler options
  • Use of emerging technologies (GPUs, multi-core processors etc.)
DO178C-SOI2

Before you have finished your Development, but when you have examples of each of your development artifacts (typically 60%-80% of your total expected artifacts), you should conduct SOI #2 with your certification authority. SOI #2 focuses on the development process and artifacts, but the review also considers verification processes that should be running concurrently with Development – specifically, the review activities being implemented. SOI #2 may also look forward to the verification phase to see if there are any examples where verification activities have provided feedback to development activities. This may include, for example, test case development or test environment development providing feedback to your requirements and design processes to ensure that test activities can completely verify the functionality expressed in your requirements and design.

Learn more about DO-178C by downloading the free 70-page handbook here.

DO-178C webinars

DO178C webinars

White papers

Mitigation of interference in multicore processors for A(M)C 20-193
Sysgo WP Developing DO-178C and ED-12C-certifiable multicore software
DO178C Handbook Efficient Verification Through the DO-178C Life Cycle
A Commercial Solution for Safety-Critical Multicore Timing Analysis

Related blog posts

News from the Certification Together International Conference in Toulouse

.
2011-12-13

4 key benefits of structural coverage for DO-178B systems

.
2011-11-10

DO-178C: The Next Avionics Safety Standard tutorial at the SIGAda conference

.
2011-11-10

Agile programming and tool qualification

.
2010-11-12

Pagination

  • First page « First
  • Previous page ‹ Previous
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Solutions
    • Rapita Verification Suite
    • RapiTest
    • RapiCover
    • RapiTime
    • RapiTask
    • MACH178

    • Verification and Validation Services
    • Qualification
    • Training
    • Integration
  • Latest
  • Latest menu

    • News
    • Blog
    • Events
    • Videos
  • Downloads
  • Downloads menu

    • Brochures
    • Webinars
    • White Papers
    • Case Studies
    • Product briefs
    • Technical notes
    • Software licensing
  • Company
  • Company menu

    • About Rapita
    • Careers
    • Customers
    • Distributors
    • Industries
    • Locations
    • Partners
    • Research projects
    • Contact
  • Discover
    • Multicore Timing Analysis
    • Embedded Software Testing Tools
    • Worst Case Execution Time
    • WCET Tools
    • Code coverage for Ada, C & C++
    • MC/DC Coverage
    • Verifying additional code for DO-178C
    • Timing analysis (WCET) & Code coverage for MATLAB® Simulink®
    • Data Coupling & Control Coupling
    • Aerospace Software Testing
    • DO-178C
    • Meeting DO-178C Objectives
    • AC 20-193 and AMC 20-193
    • Meeting A(M)C 20-193 Objectives
    • Certifying eVTOL
    • Cerifying UAS

All materials © Rapita Systems Ltd. 2025 - All rights reserved | Privacy information | Trademark notice Subscribe to our newsletter