Your browser does not support JavaScript! Skip to main content
Free 30-day trial DO-178C Handbook RapiCoupling Preview DO-178C Multicore Training Multicore Resources
Rapita Systems
 

Industry leading verification tools

Rapita Verification Suite (RVS)

RapiTest - Functional testing for critical software RapiCover - Low-overhead coverage analysis for critical software RapiTime - In-depth execution time analysis for critical software RapiTask - RTOS scheduling visualization RapiCoverZero - Zero-footprint coverage analysis RapitimeZero - Zero-footprint timing analysis RapiTaskZero - Zero-footprint event-level scheduling analysis RVS Qualification Kits - Tool qualification for DO-178 B/C and ISO 26262 projects RapiCoupling - DCCC analysis

Multicore Verification

MACH178 - Multicore Avionics Certification for High-integrity DO-178C projects MACH178 Foundations - Lay the groundwork for A(M)C 20-193 compliance Multicore Timing Solution - Solving the challenges of multicore timing analysis RapiDaemon - Analyze interference in multicore systems

Other

RTBx - The ultimate data logging solution Sim68020 - Simulation for the Motorola 68020 microprocessor

RVS Software Policy

Software licensing Product life cycle policy RVS Assurance issue policy RVS development roadmap

Industry leading verification services

Engineering Services

V&V Services Data Coupling & Control Coupling Object code verification Qualification Training Consultancy Tool Integration Support

Latest from Rapita HQ

Latest news

Rapita partners with Asterios Technologies to deliver solutions in multicore certification
SAIF Autonomy to use RVS to verify their groundbreaking AI platform
RVS 3.22 Launched
Hybrid electric pioneers, Ascendance, join Rapita Systems Trailblazer Partnership Program
View News

Latest from the Rapita blog

How emulation can reduce avionics verification costs: Sim68020
Multicore timing analysis: to instrument or not to instrument
How to certify multicore processors - what is everyone asking?
Data Coupling Basics in DO-178C
View Blog

Latest discovery pages

Military Drone Certifying Unmanned Aircraft Systems
control_tower DO-278A Guidance: Introduction to RTCA DO-278 approval
Picture of a car ISO 26262
DCCC Image Data Coupling & Control Coupling
View Discovery pages

Upcoming events

DASC 2025
2025-09-14
DO-178C Multicore In-person Training (Fort Worth, TX)
2025-10-01
DO-178C Multicore In-person Training (Toulouse)
2025-11-04
HISC 2025
2025-11-13
View Events

Technical resources for industry professionals

Latest White papers

Mitigation of interference in multicore processors for A(M)C 20-193
Sysgo WP
Developing DO-178C and ED-12C-certifiable multicore software
DO178C Handbook
Efficient Verification Through the DO-178C Life Cycle
View White papers

Latest Videos

How to make AI safe in autonomous systems with SAIF
Rapita Systems - Safety Through Quality
Simulation for the Motorola 68020 microprocessor with Sim68020
AI-driven Requirements Traceability for Faster Testing and Certification
View Videos

Latest Case studies

GMV case study front cover
GMV verify ISO26262 automotive software with RVS
Kappa: Verifying Airborne Video Systems for Air-to-Air Refueling using RVS
Supporting DanLaw with unit testing and code coverage analysis for automotive software
View Case studies

Other Resources

 Webinars

 Brochures

 Product briefs

 Technical notes

 Research projects

 Multicore resources

Discover Rapita

Who we are

The company menu

  • About us
  • Customers
  • Distributors
  • Locations
  • Partners
  • Research projects
  • Contact us
  • Careers
  • Working at Rapita

Industries

  Civil Aviation (DO-178C)   Automotive (ISO 26262)   Military & Defense   Space

US office

+1 248-957-9801
info@rapitasystems.com Rapita Systems, Inc., 41131 Vincenti Ct., Novi, MI 48375, USA

UK office

+44 (0)1904 413945
info@rapitasystems.com Rapita Systems Ltd., Atlas House, Osbaldwick Link Road, York, YO10 3JB, UK

Spain office

+34 93 351 02 05
info@rapitasystems.com Rapita Systems S.L., Parc UPC, Edificio K2M, c/ Jordi Girona, 1-3, Barcelona 08034, Spain
Back to Top Contact Us

Evolving language support in RVS: Libadalang

Charles Forsyth
2020-04-09

The efficiency of our tools is an important way in which we can offer our customers savings in terms of time and money. We are constantly refining our tools to improve this efficiency, which has recently included the adoption of new Ada language processing technology. The incorporation of libadalang will allow quicker support of new language features and speed up the analysis of customer code, especially for larger projects.

Background: Parsing in RVS

Rapita Verification Suite (RVS) contains a range of products to help customers analyze and test critical software, providing tools for instrumentation of timing and coverage, tracing, test generation and static analysis. These tools share a preparation database that contains an abstract representation of all the source code for a given customer project. Currently Rapita supports Ada, C, C++ and several assembly languages. A language-specific parser reads a source file and puts a representation of the code in the database. The structure is shown below.

Language parsers

Once the project is in the database, separate analysis tools can be run as needed, including interactive ones that allow you to guide the activity. This structure allows parsers and tools to be added or extended without disrupting anything else. In the rest of this article, we consider the process of safely changing an existing parser. We shall describe how and why Rapita changed the parser for C and C++, without disrupting customers’ work, and how it will do the same for Ada.

The evolution of programming languages

C and C++ support was originally provided by separate ad-hoc parsers. Programming languages are periodically revised, introducing new language rules and constructions, which customers wish to use (often to support third-party libraries). The ad-hoc parsers became hard to extend and maintain to track those changes. Two years ago, Rapita developed a replacement parser based on a production C and C++ compiler that would support those languages as they stood, and as they continued to evolve.

That new support for C and C++ was introduced carefully. First, it had to pass the same extensive suite of end-to-end tests as the existing parsers. Next, the old and new components were provided side-by-side, with the old ones used by default. The new one could, however, be selected explicitly, allowing its use for new integrations, but with a fallback available to the old components if necessary. Eventually, existing integrations also used the new component, and the old was deprecated. Finally, the old one was discarded. The Rapita tools continued to take their input from the database and could remain unchanged.

In a similar way to C and C++, Ada too has evolved: Ada 83, 95, 2005, 2012 and soon 2020. Unlike the ad-hoc parsers originally used for C and C++, Rapita’s Ada processing uses the GNAT Ada compiler, which does track language changes. As part of the process, however, GNAT produces an elaborate intermediate form (ASIS) that has begun to creak with age. A separate Rapita program converts ASIS into database entries. Adding support for more language features has not always been straightforward, and the two-stage process is relatively slow and inefficient since the extra intermediate form must be written out by GNAT and read back in by the conversion program.

Harnessing the power of libadalang

GNAT Compiler

AdaCore, GNAT’s author, has developed a new library libadalang specifically written to make it easier to build tools to work with Ada programs, for example better IDEs. Rapita is using libadalang to build a replacement for the GNAT-based Ada processing in the pipeline shown above. From a customer’s perspective, this will allow quicker support of new language features. Avoiding significant IO between two separate programs reduces the clock time taken to produce the preparation database, speeding up the analysis of customer code, especially for larger projects. Finally, the process for introducing the new component will mimic the one described above, successfully used for C and C++, to ensure a smooth transition.

DO-178C webinars

DO178C webinars

White papers

Mitigation of interference in multicore processors for A(M)C 20-193
Sysgo WP Developing DO-178C and ED-12C-certifiable multicore software
DO178C Handbook Efficient Verification Through the DO-178C Life Cycle
A Commercial Solution for Safety-Critical Multicore Timing Analysis

Related blog posts

What's next for Ada?

.
2014-07-04

Lesser used PowerPC instructions

.
2014-02-25

Ada, C, rem and mod

.
2014-01-14

It’s difficult to recruit programmers for Ada projects: myth or reality? (Part 3)

.
2013-08-20

Pagination

  • First page « First
  • Previous page ‹ Previous
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Next page Next ›
  • Last page Last »
  • Solutions
    • Rapita Verification Suite
    • RapiTest
    • RapiCover
    • RapiTime
    • RapiTask
    • MACH178

    • Verification and Validation Services
    • Qualification
    • Training
    • Integration
  • Latest
  • Latest menu

    • News
    • Blog
    • Events
    • Videos
  • Downloads
  • Downloads menu

    • Brochures
    • Webinars
    • White Papers
    • Case Studies
    • Product briefs
    • Technical notes
    • Software licensing
  • Company
  • Company menu

    • About Rapita
    • Careers
    • Customers
    • Distributors
    • Industries
    • Locations
    • Partners
    • Research projects
    • Contact
  • Discover
    • Multicore Timing Analysis
    • Embedded Software Testing Tools
    • Worst Case Execution Time
    • WCET Tools
    • Code coverage for Ada, C & C++
    • MC/DC Coverage
    • Verifying additional code for DO-178C
    • Timing analysis (WCET) & Code coverage for MATLAB® Simulink®
    • Data Coupling & Control Coupling
    • Aerospace Software Testing
    • DO-178C
    • Meeting DO-178C Objectives
    • AC 20-193 and AMC 20-193
    • Meeting A(M)C 20-193 Objectives
    • Certifying eVTOL
    • Cerifying UAS

All materials © Rapita Systems Ltd. 2025 - All rights reserved | Privacy information | Trademark notice Subscribe to our newsletter