Your browser does not support JavaScript! Skip to main content
Free 30-day trial Customer portal Careers DO-178C Handbook
 
Rapita Systems
 

Industry leading verification tools & services

Rapita Verification Suite (RVS)

  RapiTest - Unit/system testing   RapiCover - Structural coverage analysis   RapiTime - Timing analysis (inc. WCET)   RapiTask - Scheduling visualization   RapiCoverZero - Zero footprint coverage analysis   RapiTimeZero - Zero footprint timing analysis   RapiTaskZero - Zero footprint scheduling analysis

Multicore verification

  MACH178   Multicore Timing Solution   RapiDaemons

Services

  V & V Services   Qualification   Training   Tool Integration  Support

Industries

  Aerospace (DO-178C)   Automotive (ISO 26262)   Space

Other

  RTBx   Mx-Suite   Software licensing   Product life cycle policy  RVS development roadmap

Latest from Rapita HQ

Latest news

RVS 3.18 Launched
Solid Sands partners with Rapita Systems
Danlaw Acquires Maspatechnologies - Expanding Rapita Systems to Spain
Rapita co-authored paper wins ERTS22 Best paper award
View News

Latest from the Rapita blog

Measuring response times and more with RapiTime
Why mitigating interference alone isn’t enough to verify timing performance for multicore DO-178C projects
There are how many sources of interference in a multicore system?
Supporting modern development methodologies for verification of safety-critical software
View Blog

Latest discovery pages

do178c DO-178C Guidance: Introduction to RTCA DO-178 certification
matlab_simulink MATLAB® Simulink® MCDC coverage and WCET analysis
code_coverage_ada Code coverage for Ada, C and C++
amc-20-193 AMC 20-193
View Discovery pages

Upcoming events

Aerospace Tech Week Europe 2023
2023-03-29
Aeromart Montreal 2023
2023-04-04
Certification Together International Conference
2023-05-10
View Events

Technical resources for industry professionals

Latest White papers

DO178C Handbook
Efficient Verification Through the DO-178C Life Cycle
A Commercial Solution for Safety-Critical Multicore Timing Analysis
Compliance with the Future Airborne Capability Environment (FACE) standard
View White papers

Latest Videos

Streamlined software verification with RVS 3.18
Sequence analysis with RapiTime
Visualize call dependencies with RVS thumbnail
Visualize call dependencies with RVS
Analyze code complexity thumbnail
Analyze code complexity with RVS
View Videos

Latest Case studies

Supporting ISO 26262 ASIL D software verification for EasyMile
RapiCover’s advanced features accelerate the certification of military UAV Engine Control
Front cover of whitepaper collins
Delivering world-class tool support to Collins Aerospace
View Case studies

Other Downloads

 Webinars

 Brochures

 Product briefs

 Technical notes

 Research projects

Discover Rapita

Who we are

The company menu

  • About us
  • Customers
  • Distributors
  • Locations
  • Partners
  • Research projects
  • Contact us

US office

+1 248-957-9801
info@rapitasystems.com
Rapita Systems, Inc.
41131 Vincenti Ct.
Novi
MI 48375
USA

UK office

+44 (0)1904 413945
info@rapitasystems.com
Rapita Systems Ltd.
Atlas House
Osbaldwick Link Road
York, YO10 3JB
UK

Spain office

+34 930 46 42 72
info@rapitasystems.com
Rapita Systems S.L.
Parc UPC, Edificio K2M
c/ Jordi Girona, 1-3, Office 306-307
Barcelona 08034
Spain

Working at Rapita

Careers

Careers menu

  • Current opportunities & application process
  • Working at Rapita
Back to Top

Diagnosing the connection between RTBx and embedded targets

Breadcrumb

  1. Home
  2. Blog
  3. Diagnosing the connection between RTBx and embedded targets
Saurabh Patel
2010-10-11

I am an MSc student in Software Engineering at the University of York. Recently I had the chance to do my final year project with Rapita and I thought this would be a good way to tell people about it.

The project looked at how to diagnose the connection between RTBx and a target hardware device. I investigated ways to check that the connection is working properly and to detect simple faults like getting two wires the wrong way round, bad connections and so on.

In the end, the program that I wrote automatically diagnoses the RTBx to the target connection and provides some evidence and assurance about the state of the connection. It worked well in testing and we were able to evaluate it on a MPC-based target board connected to an RTBx.

I know that there is some work to do before my project makes it to product release, but I was pleased that my project is going to be developed further and put to good use. I hope that the project will be useful for all RTBx users! 

DO-178C webinars

DO178C webinars

White papers

DO178C Handbook Efficient Verification Through the DO-178C Life Cycle
A Commercial Solution for Safety-Critical Multicore Timing Analysis
Compliance with the Future Airborne Capability Environment (FACE) standard
5 key factors to consider when selecting an embedded testing tool
  • Solutions
    • Rapita Verification Suite
    • RapiTest
    • RapiCover
    • RapiTime
    • RapiTask
    • MACH178

    • Verification and Validation Services
    • Qualification
    • Training
    • Integration
  • Latest
  • Latest menu

    • News
    • Blog
    • Events
    • Videos
  • Downloads
  • Downloads menu

    • Brochures
    • Webinars
    • White Papers
    • Case Studies
    • Product briefs
    • Technical notes
    • Software licensing
  • Company
  • Company menu

    • About Rapita
    • Careers
    • Customers
    • Distributors
    • Industries
    • Locations
    • Partners
    • Research projects
    • Contact
  • Discover
    • AMC 20-193
    • What is CAST-32A?
    • Multicore Timing Analysis
    • MC/DC Coverage
    • Code coverage for Ada, C & C++
    • Embedded Software Testing Tools
    • Aerospace Software Testing
    • Automotive Software Testing
    • Certifying eVTOL
    • DO-178C
    • WCET Tools
    • Worst Case Execution Time
    • Timing analysis (WCET) & Code coverage for MATLAB® Simulink®

All materials © Rapita Systems Ltd. 2023 - All rights reserved | Privacy information | Trademark notice Subscribe to our newsletter