Your browser does not support JavaScript! Skip to main content
Free 30-day trial Customer portal Careers DO-178C Handbook
 
Rapita Systems
 

Industry leading verification tools & services

Rapita Verification Suite (RVS)

  RapiTest - Unit/system testing   RapiCover - Structural coverage analysis   RapiTime - Timing analysis (inc. WCET)   RapiTask - Scheduling visualization   RapiCoverZero - Zero footprint coverage analysis   RapiTimeZero - Zero footprint timing analysis   RapiTaskZero - Zero footprint scheduling analysis

Multicore Verification

  MACH178  Multicore Timing Solution  RapiDaemons

Engineering Services

  V & V Services  Qualification  Training  Tool Integration  Support

Industries

  Aerospace (DO-178C)   Automotive (ISO 26262)   Space

Other

  RTBx   Mx-Suite   Software licensing   Product life cycle policy  RVS development roadmap

Latest from Rapita HQ

Latest news

RVS 3.18 Launched
Solid Sands partners with Rapita Systems
Danlaw Acquires Maspatechnologies - Expanding Rapita Systems to Spain
Rapita co-authored paper wins ERTS22 Best paper award
View News

Latest from the Rapita blog

Measuring response times and more with RapiTime
Why mitigating interference alone isn’t enough to verify timing performance for multicore DO-178C projects
There are how many sources of interference in a multicore system?
Supporting modern development methodologies for verification of safety-critical software
View Blog

Latest discovery pages

do178c DO-178C Guidance: Introduction to RTCA DO-178 certification
matlab_simulink MATLAB® Simulink® MCDC coverage and WCET analysis
code_coverage_ada Code coverage for Ada, C and C++
amc-20-193 AMC 20-193
View Discovery pages

Upcoming events

NAVAIR FACE & SOSA TIM and Expo
2023-09-12
DASC 2023
2023-10-01
HISC 2023
2023-10-17
Aerospace Tech Week Americas 2023
2023-11-14
View Events

Technical resources for industry professionals

Latest White papers

DO178C Handbook
Efficient Verification Through the DO-178C Life Cycle
A Commercial Solution for Safety-Critical Multicore Timing Analysis
Compliance with the Future Airborne Capability Environment (FACE) standard
View White papers

Latest Videos

Challenges of certifying multicore avionics in line with A(M)C 20-193 objectives - ATW Europe 2023
Streamlined software verification with RVS 3.18
Sequence analysis with RapiTime
Visualize call dependencies with RVS thumbnail
Visualize call dependencies with RVS
View Videos

Latest Case studies

Supporting ISO 26262 ASIL D software verification for EasyMile
RapiCover’s advanced features accelerate the certification of military UAV Engine Control
Front cover of whitepaper collins
Delivering world-class tool support to Collins Aerospace
View Case studies

Other Downloads

 Webinars

 Brochures

 Product briefs

 Technical notes

 Research projects

Discover Rapita

Who we are

The company menu

  • About us
  • Customers
  • Distributors
  • Locations
  • Partners
  • Research projects
  • Contact us

US office

+1 248-957-9801
info@rapitasystems.com
Rapita Systems, Inc.
41131 Vincenti Ct.
Novi
MI 48375
USA

UK office

+44 (0)1904 413945
info@rapitasystems.com
Rapita Systems Ltd.
Atlas House
Osbaldwick Link Road
York, YO10 3JB
UK

Spain office

+34 93 351 02 05
info@rapitasystems.com
Rapita Systems S.L.
Parc UPC, Edificio K2M
c/ Jordi Girona, 1-3
Barcelona 08034
Spain

Working at Rapita

Careers

Careers menu

  • Current opportunities & application process
  • Working at Rapita
Back to Top

PROARTIS: PRObabilistic Analyzable Real Time Systems

Breadcrumb

  1. Home
  2. About us
  3. Research Projects
  4. PROARTIS: PRObabilistic Analyzable Real Time Systems

PROARTIS is a small or medium scale focused research project (STREP) funded in part by the European Union’s Seventh Framework Programme (FP7). The aim of PROARTIS is to define new hardware and software architecture paradigms whose timing behavior can be analyzed with probabilistic techniques. These new paradigms move towards design principles that make both the execution environment and the RTOS aware of the hardware. At the same time, the application programmer is freed from dealing with hardware issues.

The hypothesis of the PROARTIS project is that randomized behavior in hardware enables probabilistic analysis techniques to verify critical timing behaviors for real-time embedded systems. The underlying objective of the PROARTIS project is not to completely remove pathological execution time cases from the system (which arguably is not possible), but instead to enable a probabilistic analysis that proves that those pathological cases can only arise with a negligible probability.

This will provide a substantial advancement over current methods, including static analysis techniques and testing that so far are unable to scale up to the size and complexity of next-generation embedded real-time systems. Unlike previous approaches that provide analyzability by using deterministic and hence predictable hardware and software components, PROARTIS provides analyzability by using a hardware and software components that provide independence by design.

This represents a shift with respect to previous approaches. Since both approaches are mutually exclusive, one of the aims of the project is to quantify and compare the two paradigms. PROARTIS will support the production of analyzable critical systems on modern and future advanced hardware features such as memory hierarchies and multi-core processors. Hence, PROARTIS will allow:

  • Increased productivity by enabling programmers to develop more complex real-time software systems through timing-aware systems that reveal crucial timing details while dramatically simplifying analysis. For example, memory latencies will be predicted with less effort, requiring knowledge only of the total number of memory accesses, rather than exact memory addresses and memory access patterns.
  • Increased performance and reduced costs by enabling critical systems to take full advantage of advanced hardware like deep memory hierarchies and multicore processors. This will permit designers to schedule more tasks inside a powerful processor (delivering them from the current task-weary attitude) also reducing the weight and the size of the whole system.
  • Reduced time-to-market by enabling trustworthy WCET analyses for large-scale real-time systems that will dramatically reduce testing time.


The PROARTIS project started on 1st February 2010. The partners involved in the work are:

  • Barcelona Supercomputing Center – Centro Nacional de Supercomputación
  • Rapita Systems Ltd
  • University of Padua
  • INRIA
  • Airbus


For further information, please visit: http://www.proartis-project.eu

Download project documents

  • Solutions
    • Rapita Verification Suite
    • RapiTest
    • RapiCover
    • RapiTime
    • RapiTask
    • MACH178

    • Verification and Validation Services
    • Qualification
    • Training
    • Integration
  • Latest
  • Latest menu

    • News
    • Blog
    • Events
    • Videos
  • Downloads
  • Downloads menu

    • Brochures
    • Webinars
    • White Papers
    • Case Studies
    • Product briefs
    • Technical notes
    • Software licensing
  • Company
  • Company menu

    • About Rapita
    • Careers
    • Customers
    • Distributors
    • Industries
    • Locations
    • Partners
    • Research projects
    • Contact
  • Discover
    • AMC 20-193
    • What is CAST-32A?
    • Multicore Timing Analysis
    • MC/DC Coverage
    • Code coverage for Ada, C & C++
    • Embedded Software Testing Tools
    • Aerospace Software Testing
    • Automotive Software Testing
    • Certifying eVTOL
    • DO-178C
    • WCET Tools
    • Worst Case Execution Time
    • Timing analysis (WCET) & Code coverage for MATLAB® Simulink®

All materials © Rapita Systems Ltd. 2023 - All rights reserved | Privacy information | Trademark notice Subscribe to our newsletter