Your browser does not support JavaScript! Skip to main content
Free 30-day trial Customer portal Careers DO-178C Handbook
 
Rapita Systems
 

Industry leading verification tools & services

Rapita Verification Suite (RVS)

  RapiTest - Unit/system testing   RapiCover - Structural coverage analysis   RapiTime - Timing analysis (inc. WCET)   RapiTask - Scheduling visualization   RapiCoverZero - Zero footprint coverage analysis   RapiTimeZero - Zero footprint timing analysis   RapiTaskZero - Zero footprint scheduling analysis

Multicore verification

  MACH178   Multicore Timing Solution   RapiDaemons

Services

  V & V Services   Qualification   Training   Tool Integration  Support

Industries

  Aerospace (DO-178C)   Automotive (ISO 26262)   Space

Other

  RTBx   Mx-Suite   Software licensing   Product life cycle policy  RVS development roadmap

Latest from Rapita HQ

Latest news

RVS 3.18 Launched
Solid Sands partners with Rapita Systems
Danlaw Acquires Maspatechnologies - Expanding Rapita Systems to Spain
Rapita co-authored paper wins ERTS22 Best paper award
View News

Latest from the Rapita blog

Measuring response times and more with RapiTime
Why mitigating interference alone isn’t enough to verify timing performance for multicore DO-178C projects
There are how many sources of interference in a multicore system?
Supporting modern development methodologies for verification of safety-critical software
View Blog

Latest discovery pages

do178c DO-178C Guidance: Introduction to RTCA DO-178 certification
matlab_simulink MATLAB® Simulink® MCDC coverage and WCET analysis
code_coverage_ada Code coverage for Ada, C and C++
amc-20-193 AMC 20-193
View Discovery pages

Upcoming events

Aerospace Tech Week Europe 2023
2023-03-29
Aeromart Montreal 2023
2023-04-04
Certification Together International Conference
2023-05-10
View Events

Technical resources for industry professionals

Latest White papers

DO178C Handbook
Efficient Verification Through the DO-178C Life Cycle
A Commercial Solution for Safety-Critical Multicore Timing Analysis
Compliance with the Future Airborne Capability Environment (FACE) standard
View White papers

Latest Videos

Streamlined software verification with RVS 3.18
Sequence analysis with RapiTime
Visualize call dependencies with RVS thumbnail
Visualize call dependencies with RVS
Analyze code complexity thumbnail
Analyze code complexity with RVS
View Videos

Latest Case studies

Supporting ISO 26262 ASIL D software verification for EasyMile
RapiCover’s advanced features accelerate the certification of military UAV Engine Control
Front cover of whitepaper collins
Delivering world-class tool support to Collins Aerospace
View Case studies

Other Downloads

 Webinars

 Brochures

 Product briefs

 Technical notes

 Research projects

Discover Rapita

Who we are

The company menu

  • About us
  • Customers
  • Distributors
  • Locations
  • Partners
  • Research projects
  • Contact us

US office

+1 248-957-9801
info@rapitasystems.com
Rapita Systems, Inc.
41131 Vincenti Ct.
Novi
MI 48375
USA

UK office

+44 (0)1904 413945
info@rapitasystems.com
Rapita Systems Ltd.
Atlas House
Osbaldwick Link Road
York, YO10 3JB
UK

Spain office

+34 930 46 42 72
info@rapitasystems.com
Rapita Systems S.L.
Parc UPC, Edificio K2M
c/ Jordi Girona, 1-3, Office 306-307
Barcelona 08034
Spain

Working at Rapita

Careers

Careers menu

  • Current opportunities & application process
  • Working at Rapita
Back to Top

Breadcrumb

  1. Home
  2. Embedded Software Testing Tools

Discover Embedded Software Testing Tools

  • Intro
  • The essentials
  • Tools
  • RVS

Embedded software testing tools

In embedded systems, hardware and software are integrated to perform a specific function, with a microcontroller/microprocessor typically acting as the “brain” driving the intended action. Examples of embedded systems include washing machines, ATMs, flight control systems, navigation systems and engine power management systems.

In embedded testing, the functional behavior of embedded hardware or software is verified and validated to provide evidence that it meets its intended functions and is robust. Testing plays a crucial role in development as end users may not be able to modify the underlying software or access hardware components.

chip
DO-178-whitepapers
 
Which tools are you interested in?
When you contact us, we will process your personal data in accordance with our data protection policy, please see our Customer Privacy Information for more information.

What happens next?
We aim to respond to trial version requests within 1 working day. If you have any further questions, please do not hesitate to contact us.

Software testing essentials

Embedded software testing is a rigorous task that can be time and labor intensive. Manual testing is expensive, is prone to errors, and it can be difficult to reproduce manual tests. Tools that can automate testing can increase the efficiency of the process and save costs. Tool automation also allows tests to be run in a continuous integration environment, reducing the effort needed to identify and fix any bugs developed during software development.

As such, using a tool to automate software testing is a good step on the road to executing a robust testing plan as good tools save developers time and lower project costs. We’ve listed some important features to look out for when selecting an embedded software testing tool below.

1. On-target and on-host testing

Embedded software can be tested either on-target or on-host. In on-target testing, an application is tested on the hardware to be deployed (the target). In on-host testing, an application is tested on a host computer that has a different hardware environment to the final application.

On-target testing is important as software behavior often depends greatly on the hardware environment the software is hosted on. On-target testing is, however, often more expensive than on-host testing, and requires access to the target hardware. In some applications, however, access to the final target hardware may not be readily available and may only be available late during software development.

target

On-host testing is usually less resource intensive than on-target testing and provides a means of performing tests even when the hardware is not readily available. This has several benefits including allowing testing to be automated and run continuously during software development and allowing testing to be performed off-site.

When testing embedded software, the best option is to keep your options open so you can perform both on-target and on-host testing. Tools that are specifically designed for on-target testing such as RVS also support on-host testing, offering you the flexibility to use both testing strategies.

2. Unit, integration and system testing

testing

Embedded software can be tested at various levels of granularity, representing environments that more or less closely represent the final system in which the software will be hosted. Among others, the terms unit testing, integration testing and system testing are often used.

Unit testing involves testing individual modules of the application in isolation i.e. without interaction with other modules or external dependencies such as databases. As unit testing only requires a subset of the software, it allows testing to begin early in software development. Unit tests are often automated to run throughout development as a set of regression tests that can identify errors introduced during development.

Integration testing involves checking if modules work correctly when they are combined. This provides a wider scope for testing, and bugs that are introduced arising from module interactions are commonly detected during integration testing.

System testing involves checking if the entire integrated software is working correctly. Performed on the fully integrated system, this lets engineers check whether the system meets its high-level requirements.

As unit, integration and system testing each have benefits during embedded software testing, you probably want to select a tool such as RapiTest, which lets you test systems at all levels of granularity.

3. Structural code coverage analysis

Structural code coverage is a metric used to establish the completeness of software testing. The higher the percentage of coverage achieved when testing a system, the less risk there is of the software having unintended functions, missing tests or requirements.

When testing embedded software, various code coverage metrics may be collected, which provide an increasing level of granularity about the software’s testing:

  • Function coverage
  • Statement coverage
  • Decision (branch) coverage
  • Modified condition decision coverage (MC/DC)
coverage testing

When selecting an embedded testing tool, the higher the granularity of coverage testing you perform, the more reassurance you can have that your software doesn't include unintentional functionality. As such, you may want to select a tool such as RapiCover, which analyzes coverage at all levels listed above.

4. Execution time analysis

Execution time analysis gives developers an understanding of the execution time behavior of their code in its target environment. This analysis is especially important when working with real-time systems or safety-critical applications.

timing analysis

This analysis can be used to test whether software executes within any timing budgets allocated to it, and to easily identify areas of the code that can be optimized to improve its timing performance.

When analyzing software execution time, various timing metrics are of interest:

  • Overall execution time of the code
  • High watermark execution time
  • Contribution of each function to execution time
  • Worst-case execution time (vital in safety critical applications)

As with code coverage analysis tools, the more metrics you can get out of your embedded testing tool, the better. Tools like RapiTime let you perform detailed timing of your software, helping you to optimize your code and make the most of your target hardware.

5. Scheduling analysis

Scheduling analysis provides an overview of when tasks are executed, allowing embedded testers to get a picture of the program flow and task response times. This analysis also lets engineers see how often specific events occur in their software. From this information, rare timing events such as race conditions or deadlocks can be identified, investigated and resolved.

To best understand the scheduling behavior of your system, you may want to look for tools with features that help you visualize large traces easily and view additional metrics such as CPU utilization and jitter, like those offered by RapiTask.

6. Continuous integration

Continuous integration servers are often used to keep track of software development over time. When an automated test tool can interface with the continuous integration server being used, tests can be automatically run with each new revision of the software. This helps with software quality control as it lets you track your testing progress over time and identify which versions of the source code caused failures.

When selecting an embedded software testing tool, you may want to select one that integrates with the continuous build environment you're already using.

7. Tool qualification

If you need to certify the embedded software you’re developing, it is good to have assurance that the testing tool you will be using produces accurate results. To provide this assurance, software testing tool vendors can qualify their tools, providing evidence that they produce dependable results through internal tests of their tool. This feature is essential, especially when working with safety-critical software e.g. avionics software and DO-178 certification.

Tools on the market

There are many software tools on the market that provide some of the features listed above. The Rapita Verification Suite (RVS) contains plugins that enable embedded testing engineers an automated platform to collect verification data from their software while it runs on either host machines or embedded targets, and letting them track data through continuous integration servers such as Jenkins.

RVS includes a range of plugins that let you automate various parts of your embedded software testing:

  • Generation and execution of unit, integration and system tests – RapiTest
  • Structural code coverage analysis – RapiCover
  • Execution time analysis – RapiTime
  • Scheduling analysis – RapiTask

RVS plugins have been qualified for use in many successful projects requiring certification.

RVS logo

Rapita Verification Suite: On-target software verification for critical embedded systems

 
Choose your free resource:
When you contact us, we will process your personal data in accordance with our data protection policy, please see our Customer Privacy Information for more information.
  • Solutions
    • Rapita Verification Suite
    • RapiTest
    • RapiCover
    • RapiTime
    • RapiTask
    • MACH178

    • Verification and Validation Services
    • Qualification
    • Training
    • Integration
  • Latest
  • Latest menu

    • News
    • Blog
    • Events
    • Videos
  • Downloads
  • Downloads menu

    • Brochures
    • Webinars
    • White Papers
    • Case Studies
    • Product briefs
    • Technical notes
    • Software licensing
  • Company
  • Company menu

    • About Rapita
    • Careers
    • Customers
    • Distributors
    • Industries
    • Locations
    • Partners
    • Research projects
    • Contact
  • Discover
    • AMC 20-193
    • What is CAST-32A?
    • Multicore Timing Analysis
    • MC/DC Coverage
    • Code coverage for Ada, C & C++
    • Embedded Software Testing Tools
    • Aerospace Software Testing
    • Automotive Software Testing
    • Certifying eVTOL
    • DO-178C
    • WCET Tools
    • Worst Case Execution Time
    • Timing analysis (WCET) & Code coverage for MATLAB® Simulink®

All materials © Rapita Systems Ltd. 2023 - All rights reserved | Privacy information | Trademark notice Subscribe to our newsletter