Your browser does not support JavaScript! Skip to main content
Free 30-day trial Customer portal Careers DO-178C Handbook
 
Rapita Systems
 

Industry leading verification tools & services

Rapita Verification Suite (RVS)

  RapiTest - Unit/system testing   RapiCover - Structural coverage analysis   RapiTime - Timing analysis (inc. WCET)   RapiTask - Scheduling visualization   RapiCoverZero - Zero footprint coverage analysis   RapiTimeZero - Zero footprint timing analysis   RapiTaskZero - Zero footprint scheduling analysis

Multicore verification

  MACH178   Multicore Timing Solution   RapiDaemons

Services

  V & V Services   Qualification   Training   Tool Integration  Support

Industries

  Aerospace (DO-178C)   Automotive (ISO 26262)   Space

Other

  RTBx   Mx-Suite   Software licensing   Product life cycle policy  RVS development roadmap

Latest from Rapita HQ

Latest news

RVS 3.18 Launched
Solid Sands partners with Rapita Systems
Danlaw Acquires Maspatechnologies - Expanding Rapita Systems to Spain
Rapita co-authored paper wins ERTS22 Best paper award
View News

Latest from the Rapita blog

Measuring response times and more with RapiTime
Why mitigating interference alone isn’t enough to verify timing performance for multicore DO-178C projects
There are how many sources of interference in a multicore system?
Supporting modern development methodologies for verification of safety-critical software
View Blog

Latest discovery pages

do178c DO-178C Guidance: Introduction to RTCA DO-178 certification
matlab_simulink MATLAB® Simulink® MCDC coverage and WCET analysis
code_coverage_ada Code coverage for Ada, C and C++
amc-20-193 AMC 20-193
View Discovery pages

Upcoming events

Aerospace Tech Week Europe 2023
2023-03-29
Aeromart Montreal 2023
2023-04-04
Certification Together International Conference
2023-05-10
View Events

Technical resources for industry professionals

Latest White papers

DO178C Handbook
Efficient Verification Through the DO-178C Life Cycle
A Commercial Solution for Safety-Critical Multicore Timing Analysis
Compliance with the Future Airborne Capability Environment (FACE) standard
View White papers

Latest Videos

Streamlined software verification with RVS 3.18
Sequence analysis with RapiTime
Visualize call dependencies with RVS thumbnail
Visualize call dependencies with RVS
Analyze code complexity thumbnail
Analyze code complexity with RVS
View Videos

Latest Case studies

Supporting ISO 26262 ASIL D software verification for EasyMile
RapiCover’s advanced features accelerate the certification of military UAV Engine Control
Front cover of whitepaper collins
Delivering world-class tool support to Collins Aerospace
View Case studies

Other Downloads

 Webinars

 Brochures

 Product briefs

 Technical notes

 Research projects

Discover Rapita

Who we are

The company menu

  • About us
  • Customers
  • Distributors
  • Locations
  • Partners
  • Research projects
  • Contact us

US office

+1 248-957-9801
info@rapitasystems.com
Rapita Systems, Inc.
41131 Vincenti Ct.
Novi
MI 48375
USA

UK office

+44 (0)1904 413945
info@rapitasystems.com
Rapita Systems Ltd.
Atlas House
Osbaldwick Link Road
York, YO10 3JB
UK

Spain office

+34 930 46 42 72
info@rapitasystems.com
Rapita Systems S.L.
Parc UPC, Edificio K2M
c/ Jordi Girona, 1-3, Office 306-307
Barcelona 08034
Spain

Working at Rapita

Careers

Careers menu

  • Current opportunities & application process
  • Working at Rapita
Back to Top

Breadcrumb

  1. Home
  2. Automotive Software Testing

Discover Automotive Software Testing

  • Intro
  • Solutions
  • ISO-26262

What is Automotive Software Testing?

Modern cars include many embedded systems to improve the safety and comfort of drivers and passengers by providing functions such as adaptive cruise control and tyre-pressure monitoring.

Many of the embedded systems used in modern cars are safety-critical. For these systems, it is essential that the software is checked to ensure that it functions correctly, as even slight faults could result in serious injury.

Functional safety checks for safety-critical automotive applications may include:

  • Functional testing to ensure that the software meets high- and low-level requirements.
  • Worst-case execution time analysis to ensure that time-critical sections of code (such as those used in airbag deployment) meet timing deadlines
  • Structural coverage analysis to ensure that structural elements of the code (such as statements) have been tested to an acceptable degree

Automotive software testing

Automotive software testing solutions

  • Unit/system testing
  • Code coverage analysis
  • Timing analysis
  • Schedule/event tracing

What is ISO-26262?

ISO 26262 is an international functional safety standard for electric and electronic systems in all production vehicles. The standard aims to address the possible dangers caused by malfunctioning automotive systems. Initially published in 2011 as an adaptation of the Functional Safety standard IEC 61508, it was updated in 2018 to extend its scope from only covering passenger cars to covering all road vehicles except mopeds.

One of the key characteristics of the ISO 26262 standard is the use of a qualitative risk measurement system (safety integrity levels) to ensure adequate safety measures in an automotive project.

ASIL (Automotive Safety Integrity Level)

Automotive Safety Integrity Level is a classification system used in ISO 26262 to express the degree of risk should a component fail, and the level of risk reduction needed to prevent a hazard in an automotive system. There are 4 ASILs, A to D, where level A systems are those that represent the lowest risk on failure, and level D systems represent the highest risk. Should an ASIL D system fail, there could be potential for loss of life, and as such these systems have much stricter compliance requirements and require the highest level of assurance to demonstrate that safety measures are sufficient.

If the risk associated with a component is very low, a fifth ASIL criteria, “Quality Management” is used. This means that no safety measures are required for that component in accordance with ISO 26262.

RVS

Rapita Verification Suite: On-target software verification for critical embedded systems

 
Choose your free resource:
When you contact us, we will process your personal data in accordance with our data protection policy, please see our Customer Privacy Information for more information.
  • Solutions
    • Rapita Verification Suite
    • RapiTest
    • RapiCover
    • RapiTime
    • RapiTask
    • MACH178

    • Verification and Validation Services
    • Qualification
    • Training
    • Integration
  • Latest
  • Latest menu

    • News
    • Blog
    • Events
    • Videos
  • Downloads
  • Downloads menu

    • Brochures
    • Webinars
    • White Papers
    • Case Studies
    • Product briefs
    • Technical notes
    • Software licensing
  • Company
  • Company menu

    • About Rapita
    • Careers
    • Customers
    • Distributors
    • Industries
    • Locations
    • Partners
    • Research projects
    • Contact
  • Discover
    • AMC 20-193
    • What is CAST-32A?
    • Multicore Timing Analysis
    • MC/DC Coverage
    • Code coverage for Ada, C & C++
    • Embedded Software Testing Tools
    • Aerospace Software Testing
    • Automotive Software Testing
    • Certifying eVTOL
    • DO-178C
    • WCET Tools
    • Worst Case Execution Time
    • Timing analysis (WCET) & Code coverage for MATLAB® Simulink®

All materials © Rapita Systems Ltd. 2023 - All rights reserved | Privacy information | Trademark notice Subscribe to our newsletter