Your browser does not support JavaScript! Skip to main content
Free 30-day trial Customer portal Careers DO-178C Handbook
 
Rapita Systems
 

Industry leading verification tools & services

Rapita Verification Suite (RVS)

  RapiTest - Unit/system testing   RapiCover - Structural coverage analysis   RapiTime - Timing analysis (inc. WCET)   RapiTask - Scheduling visualization   RapiCoverZero - Zero footprint coverage analysis   RapiTimeZero - Zero footprint timing analysis   RapiTaskZero - Zero footprint scheduling analysis

Multicore verification

  MACH178   Multicore Timing Solution   RapiDaemons

Services

  V & V Services   Qualification   Training   Tool Integration  Support

Industries

  Aerospace (DO-178C)   Automotive (ISO 26262)   Space

Other

  RTBx   Mx-Suite   Software licensing   Product life cycle policy  RVS development roadmap

Latest from Rapita HQ

Latest news

Danlaw Acquires Maspatechnologies - Expanding Rapita Systems to Spain
Rapita co-authored paper wins ERTS22 Best paper award
A look back on Rapita's Multicore DO-178C training in Huntsville
RVS 3.17 Launched
View News

Latest from the Rapita blog

Why mitigating interference alone isn’t enough to verify timing performance for multicore DO-178C projects
There are how many sources of interference in a multicore system?
Supporting modern development methodologies for verification of safety-critical software
Flexible licensing software fit for modern working
View Blog

Latest discovery pages

do178c DO-178C Guidance: Introduction to RTCA DO-178 certification
matlab_simulink MATLAB® Simulink® MCDC coverage and WCET analysis
code_coverage_ada Code coverage for Ada, C and C++
amc-20-193 AMC 20-193
View Discovery pages

Upcoming events

Aerospace Tech Week Europe 2023
2023-03-29
Certification Together International Conference
2023-05-10
View Events

Technical resources for industry professionals

Latest White papers

DO178C Handbook
Efficient Verification Through the DO-178C Life Cycle
A Commercial Solution for Safety-Critical Multicore Timing Analysis
Compliance with the Future Airborne Capability Environment (FACE) standard
View White papers

Latest Videos

Efficient DO-178C verification - WCET analysis
Efficient DO-178C verification - Code coverage
Efficient DO-178C verification - Functional testing
SCADE Test video thumbnail
Complementary DO-178C verification with Ansys(R) SCADE Test(TM) and RVS
View Videos

Latest Case studies

Supporting ISO 26262 ASIL D software verification for EasyMile
RapiCover’s advanced features accelerate the certification of military UAV Engine Control
Front cover of whitepaper collins
Delivering world-class tool support to Collins Aerospace
View Case studies

Other Downloads

 Webinars

 Brochures

 Product briefs

 Technical notes

 Research projects

Discover Rapita

Who we are

The company menu

  • About us
  • Customers
  • Distributors
  • Locations
  • Partners
  • Research projects
  • Contact us

US office

+1 248-957-9801
info@rapitasystems.com
Rapita Systems, Inc.
41131 Vincenti Ct.
Novi
MI 48375
USA

UK office

+44 (0)1904 413945
info@rapitasystems.com
Rapita Systems Ltd.
Atlas House
Osbaldwick Link Road
York, YO10 3JB
UK

Spain office

+34 930 46 42 72
info@rapitasystems.com
Rapita Systems S.L.
Parc UPC, Edificio K2M
c/ Jordi Girona, 1-3, Office 306-307
Barcelona 08034
Spain

Working at Rapita

Careers

Careers menu

  • Current opportunities & application process
  • Working at Rapita
Back to Top

A five step process for optimization

Breadcrumb

  1. Home
  2. Blog
  3. A five step process for optimization
2010-05-28

This post introduces a five step process for optimizations. The key to this process is to understand that step 4 (the technical work) is the most expensive, risky and time-consuming part. Therefore this process is designed to minimize the amount of time wasted in that step by avoiding optimizing the wrong things or spending unnecessary effort optimizing beyond the target. Unknown Object

  1. Identify Candidates
    What are the optimization candidates? Make a shortlist of places to try optimizations and targets for what you would like to reduce there. Of course to do this, you need good information, as discussed in the previous post.

  2. Analyse the potential gains and set targets for what you would like to be able to achieve.
    If a candidate consumes 20% of the worst case execution time and you optimize it by 50%, you get at most 10% back. Is that enough justification to optimize it?

  3. Know "what if".
    What if you were actually successful in optimizing the function by 50%? Does the worst case path switch somewhere else? If so, there's no point in continuing to optimize that function.

  4. Try an optimization.
    Actually do some technical work and perform an optimization.

  5. Validate.
    Measure the gain (or loss). Does the code still pass the tests? Did you achieve your target identified in step 2? Roll back if the work is not good enough.


Ian Dr Ian Broster is to run a half-day training session on software optimization at the forthcoming Reliable Software Technologies Conference - Ada Europe 2010.

The conference program is available here. Please register on-line and select Tutorial T5 (I. Broster).

The event takes place on the afternoon of Monday 14th June 2010 in Valencia, Spain.

For more information, or if you are unable to attend on this date and would like to take part in a similar tutorial, please feel free to contact us.

DO-178C webinars

DO178C webinars

White papers

DO178C Handbook Efficient Verification Through the DO-178C Life Cycle
A Commercial Solution for Safety-Critical Multicore Timing Analysis
Compliance with the Future Airborne Capability Environment (FACE) standard
5 key factors to consider when selecting an embedded testing tool

Related blog posts

Conditional code without branches

.
2015-12-10

Optimising for code size might not do what you expect - a GCC and PowerPC example

.
2015-02-09

Multi-core pitfalls: unintended code synchronization

.
2015-01-07

Is your compiler smarter than an undergraduate?

.
2013-11-13

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Next page Next ›
  • Last page Last »
  • Solutions
    • Rapita Verification Suite
    • RapiTest
    • RapiCover
    • RapiTime
    • RapiTask
    • MACH178

    • Verification and Validation Services
    • Qualification
    • Training
    • Integration
  • Latest
  • Latest menu

    • News
    • Blog
    • Events
    • Videos
  • Downloads
  • Downloads menu

    • Brochures
    • Webinars
    • White Papers
    • Case Studies
    • Product briefs
    • Technical notes
    • Software licensing
  • Company
  • Company menu

    • About Rapita
    • Careers
    • Customers
    • Distributors
    • Industries
    • Locations
    • Partners
    • Research projects
    • Contact
  • Discover
    • AMC 20-193
    • What is CAST-32A?
    • Multicore Timing Analysis
    • MC/DC Coverage
    • Code coverage for Ada, C & C++
    • Embedded Software Testing Tools
    • Aerospace Software Testing
    • Automotive Software Testing
    • Certifying eVTOL
    • DO-178C
    • WCET Tools
    • Worst Case Execution Time
    • Timing analysis (WCET) & Code coverage for MATLAB® Simulink®

All materials © Rapita Systems Ltd. 2023 - All rights reserved | Privacy information | Trademark notice Subscribe to our newsletter