Your browser does not support JavaScript! Skip to main content
Free 30-day trial DO-178C Handbook RapiCoupling Preview DO-178C Multicore Training Multicore Resources
Rapita Systems
 

Industry leading verification tools & services

Rapita Verification Suite (RVS)

  RapiTest - Unit/system testing  RapiCover - Structural coverage analysis  RapiTime - Timing analysis (inc. WCET)  RapiTask - Scheduling visualization  RapiCoverZero - Zero footprint coverage analysis  RapiTimeZero - Zero footprint timing analysis  RapiTaskZero - Zero footprint scheduling analysis  RapiCouplingPreview - DCCC analysis

Multicore Verification

  MACH178  MACH178 Foundations  Multicore Timing Solution  RapiDaemons

Engineering Services

  V&V Services  Data Coupling & Control Coupling  Object code verification  Qualification  Training  Consultancy  Tool Integration  Support

Industries

  Civil Aviation (DO-178C)   Automotive (ISO 26262)   Military & Defense   Space

Other

RTBx Mx-Suite Software licensing Product life cycle policy RVS Assurance issue policy RVS development roadmap

Latest from Rapita HQ

Latest news

SAIF Autonomy to use RVS to verify their groundbreaking AI platform
RVS 3.22 Launched
Hybrid electric pioneers, Ascendance, join Rapita Systems Trailblazer Partnership Program
Magline joins Rapita Trailblazer Partnership Program to support DO-178 Certification
View News

Latest from the Rapita blog

How to certify multicore processors - what is everyone asking?
Data Coupling Basics in DO-178C
Control Coupling Basics in DO-178C
Components in Data Coupling and Control Coupling
View Blog

Latest discovery pages

control_tower DO-278A Guidance: Introduction to RTCA DO-278 approval
Picture of a car ISO 26262
DCCC Image Data Coupling & Control Coupling
Additional Coe verification thumb Verifying additional code for DO-178C
View Discovery pages

Upcoming events

DASC 2025
2025-09-14
DO-178C Multicore In-person Training (Fort Worth, TX)
2025-10-01
DO-178C Multicore In-person Training (Toulouse)
2025-11-04
HISC 2025
2025-11-13
View Events

Technical resources for industry professionals

Latest White papers

Mitigation of interference in multicore processors for A(M)C 20-193
Sysgo WP
Developing DO-178C and ED-12C-certifiable multicore software
DO178C Handbook
Efficient Verification Through the DO-178C Life Cycle
View White papers

Latest Videos

Rapita Systems - Safety Through Quality
Simulation for the Motorola 68020 microprocessor with Sim68020
AI-driven Requirements Traceability for Faster Testing and Certification
Multicore software verification with RVS 3.22
View Videos

Latest Case studies

GMV case study front cover
GMV verify ISO26262 automotive software with RVS
Kappa: Verifying Airborne Video Systems for Air-to-Air Refueling using RVS
Supporting DanLaw with unit testing and code coverage analysis for automotive software
View Case studies

Other Resources

 Webinars

 Brochures

 Product briefs

 Technical notes

 Research projects

 Multicore resources

Discover Rapita

Who we are

The company menu

  • About us
  • Customers
  • Distributors
  • Locations
  • Partners
  • Research projects
  • Contact us

US office

+1 248-957-9801
info@rapitasystems.com
Rapita Systems, Inc.
41131 Vincenti Ct.
Novi
MI 48375
USA

UK office

+44 (0)1904 413945
info@rapitasystems.com
Rapita Systems Ltd.
Atlas House
Osbaldwick Link Road
York, YO10 3JB
UK

Spain office

+34 93 351 02 05
info@rapitasystems.com
Rapita Systems S.L.
Parc UPC, Edificio K2M
c/ Jordi Girona, 1-3
Barcelona 08034
Spain

Working at Rapita

Careers

Careers menu

  • Current opportunities & application process
  • Working at Rapita
Back to Top Contact Us

Software Optimization Techniques #8: Look-up Tables

Breadcrumb

  1. Home
2011-03-17

Continuing our series of blog posts on optimizing embedded software with the aim of improving (i.e. reducing) worst-case execution times, this week’s subject is look-up tables.

Software optimization techniques which improve worst-case execution times #8: Look-up Tables

Using look-up tables can be a highly effective method of improving worst-case execution times.

Look-up tables are useful in implementing pure functions (by which we mean a function without any side effects) of one or two variables that take a relatively limited range of values and are mapped via some non-trivial code to a value possibly of a different type.

Examples include approximations to trigonometric functions such as sin() and cos().

Example: Switch

Uint32 
switch_code1(Uint32 mode)
{
Uint32 message_id;
switch(mode)
{
case 0:
message_id = 0x55;
break;
case 1:
message_id = 0x66;
break;
case 2:
message_id = 0x77;
break;
}
return message_id;
}

Sometimes switch statements are used to map solely from one variable to another. In this case a more efficient implementation would be to use a look-up table as shown in the example below.

Example: Look-up table rather than switch

const Uint32 g_id_table[3] = 	{0x55,0x66,0x77};
Uint32
lookup_code2(Uint32 mode)
{
return g_id_table[mode];
}

The look-up table implementation has a worst-case execution time that is both shorter and constant. It also requires less code space. The effectiveness of this technique becomes more pronounced with an increasing number of elements required in the mapping.

Function WCET (clock ticks)
  MPC555 HC12
switch_code1 20 121
lookup_code2 14 31
Reduction in WCET 30% 74.3%

Look-up table techniques can also be applied very effectively to the “count set bits” example used previously.

Example: Look-up table

const Uint8 bits_table[] =
{0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4};
Uint32
csb5(Uint32 x)
{
Uint32 set_bits = 0;
while(x)
{
set_bits += bits_table[x & 0xF];
x >>= 4;
}
return set_bits;
}

In the example above, a small look-up table is used to hold pre-computed values for the number of set bits in all the 4-bit values from 0 to 15. On each iteration of the loop, the bottom 4-bits of x are used to index the look-up table and hence count how many of those bits are set. x is then shifted right by 4-bits so that the next 4 least significant bits can be examined, and so on.

Next week: Single path code

DO-178C webinars

DO178C webinars

White papers

Mitigation of interference in multicore processors for A(M)C 20-193
Sysgo WP Developing DO-178C and ED-12C-certifiable multicore software
DO178C Handbook Efficient Verification Through the DO-178C Life Cycle
A Commercial Solution for Safety-Critical Multicore Timing Analysis

Related blog posts

Conditional code without branches

.
2015-12-10

Optimising for code size might not do what you expect - a GCC and PowerPC example

.
2015-02-09

Multi-core pitfalls: unintended code synchronization

.
2015-01-07

Is your compiler smarter than an undergraduate?

.
2013-11-13

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Next page Next ›
  • Last page Last »
  • Solutions
    • Rapita Verification Suite
    • RapiTest
    • RapiCover
    • RapiTime
    • RapiTask
    • MACH178

    • Verification and Validation Services
    • Qualification
    • Training
    • Integration
  • Latest
  • Latest menu

    • News
    • Blog
    • Events
    • Videos
  • Downloads
  • Downloads menu

    • Brochures
    • Webinars
    • White Papers
    • Case Studies
    • Product briefs
    • Technical notes
    • Software licensing
  • Company
  • Company menu

    • About Rapita
    • Careers
    • Customers
    • Distributors
    • Industries
    • Locations
    • Partners
    • Research projects
    • Contact
  • Discover
    • Multicore Timing Analysis
    • Embedded Software Testing Tools
    • Worst Case Execution Time
    • WCET Tools
    • Code coverage for Ada, C & C++
    • MC/DC Coverage
    • Verifying additional code for DO-178C
    • Timing analysis (WCET) & Code coverage for MATLAB® Simulink®
    • Data Coupling & Control Coupling
    • Aerospace Software Testing
    • Automotive Software Testing
    • Certifying eVTOL
    • DO-178C
    • AC 20-193 and AMC 20-193
    • ISO 26262
    • What is CAST-32A?

All materials © Rapita Systems Ltd. 2025 - All rights reserved | Privacy information | Trademark notice Subscribe to our newsletter