Your browser does not support JavaScript! Skip to main content
Free 30-day trial DO-178C Handbook RapiCoupling Preview DO-178C Multicore Training Multicore Resources
Rapita Systems
 

Industry leading verification tools & services

Rapita Verification Suite (RVS)

  RapiTest - Unit/system testing  RapiCover - Structural coverage analysis  RapiTime - Timing analysis (inc. WCET)  RapiTask - Scheduling visualization  RapiCoverZero - Zero footprint coverage analysis  RapiTimeZero - Zero footprint timing analysis  RapiTaskZero - Zero footprint scheduling analysis  RapiCouplingPreview - DCCC analysis

Multicore Verification

  MACH178  MACH178 Foundations  Multicore Timing Solution  RapiDaemons

Engineering Services

  V&V Services  Data Coupling & Control Coupling  Object code verification  Qualification  Training  Consultancy  Tool Integration  Support

Industries

  Civil Aviation (DO-178C)   Automotive (ISO 26262)   Military & Defense   Space

Other

RTBx Mx-Suite Software licensing Product life cycle policy RVS Assurance issue policy RVS development roadmap

Latest from Rapita HQ

Latest news

SAIF Autonomy to use RVS to verify their groundbreaking AI platform
RVS 3.22 Launched
Hybrid electric pioneers, Ascendance, join Rapita Systems Trailblazer Partnership Program
Magline joins Rapita Trailblazer Partnership Program to support DO-178 Certification
View News

Latest from the Rapita blog

How to certify multicore processors - what is everyone asking?
Data Coupling Basics in DO-178C
Control Coupling Basics in DO-178C
Components in Data Coupling and Control Coupling
View Blog

Latest discovery pages

control_tower DO-278A Guidance: Introduction to RTCA DO-278 approval
Picture of a car ISO 26262
DCCC Image Data Coupling & Control Coupling
Additional Coe verification thumb Verifying additional code for DO-178C
View Discovery pages

Upcoming events

XPONENTIAL 2025
2025-05-19
Avionics and Testing Innovations 2025
2025-05-20
DASC 2025
2025-09-14
DO-178C Multicore In-person Training (Fort Worth, TX)
2025-10-01
View Events

Technical resources for industry professionals

Latest White papers

Mitigation of interference in multicore processors for A(M)C 20-193
Sysgo WP
Developing DO-178C and ED-12C-certifiable multicore software
DO178C Handbook
Efficient Verification Through the DO-178C Life Cycle
View White papers

Latest Videos

Rapita Systems - Safety Through Quality
Simulation for the Motorola 68020 microprocessor with Sim68020
AI-driven Requirements Traceability for Faster Testing and Certification
Multicore software verification with RVS 3.22
View Videos

Latest Case studies

GMV case study front cover
GMV verify ISO26262 automotive software with RVS
Kappa: Verifying Airborne Video Systems for Air-to-Air Refueling using RVS
Supporting DanLaw with unit testing and code coverage analysis for automotive software
View Case studies

Other Resources

 Webinars

 Brochures

 Product briefs

 Technical notes

 Research projects

 Multicore resources

Discover Rapita

Who we are

The company menu

  • About us
  • Customers
  • Distributors
  • Locations
  • Partners
  • Research projects
  • Contact us

US office

+1 248-957-9801
info@rapitasystems.com
Rapita Systems, Inc.
41131 Vincenti Ct.
Novi
MI 48375
USA

UK office

+44 (0)1904 413945
info@rapitasystems.com
Rapita Systems Ltd.
Atlas House
Osbaldwick Link Road
York, YO10 3JB
UK

Spain office

+34 93 351 02 05
info@rapitasystems.com
Rapita Systems S.L.
Parc UPC, Edificio K2M
c/ Jordi Girona, 1-3
Barcelona 08034
Spain

Working at Rapita

Careers

Careers menu

  • Current opportunities & application process
  • Working at Rapita
Back to Top Contact Us

Wide Body Jet Flight Control System

Breadcrumb

  1. Home

Wide Body Jet Flight Control System

  Download
.

When an industry-leading avionics supplier set out to develop the Flight Control System for a new class of aircraft, its key objectives were to improve product quality while simultaneously driving down development costs.

In critical applications such as flight control systems, the timing behavior of the system is as important as functional behavior. Therefore, establishing the system’s execution timing cannot be an afterthought.

Early detection and resolution of potential timing problems brings benefits both in terms of reduced development costs, but also in improved quality.

Summary

The challenge

  • To improve early detection and resolution of timing problems on a flight control system while reducing development effort

The solution

  • RapiTime on-target profiling automates execution time measurement and highlights potential problem areas

The benefits

  • Identifying the causes of timing problems with less than 10% of the effort of previous approaches
  • Showing specific fixes are free of side-effects
  • Providing convincing evidence that timing requirements have been met.

The challenge

The supplier’s approach to ensuring execution timing relied upon effort-intensive manual processes:

  • Large quantities of tests were required to obtain time measurements
  • Painstaking effort was then required to map the measurements back onto the underlying architecture
  • The high cost of collecting this information made it undesirable to repeat measurements throughout the process.
 
cockpit
 

The solution

The avionics supplier considered several alternative approaches for automating the process of measuring software execution timing before selecting RapiTime from Rapita.

RapiTime (part of the Rapita Verification Suite, RVS) is a tool suite that analyzes the timing behavior of embedded software by combining a static model of the code structure with dynamic results in the form of detailed measurements of on-target timing behavior.

In addition to recording the distribution of execution times (including minimum, maximum and average) and code coverage, RapiTime adds the ability to predictively model untested paths (which it creates by composing previously tested path components).

“It was the combination of static and dynamic analysis that attracted us. We were concerned that an approach that relied only on static analysis was dependent upon getting the model of the hardware exactly right. RapiTime’s ability to measure code executed on the target hardware removes that risk from the outset.”

Wayne King

Engineering Fellow

RapiTime distils huge amounts of information into digestible, human-readable tables and charts. This enables better optimization, debugging and more detailed confirmation of execution timing than ever before.

RapiTime places particular emphasis on analysis of the worst-case execution time (WCET), the key factor in determining responsiveness of real-time systems.

The benefits

“The biggest benefit that RapiTime brought to our development process was just how quickly we could get comprehensive timing measurements from our tests.

Not only did we reduce our effort requirements for the testing, but we could use our results in ways that were infeasible before. It is now significantly faster for us to identify a timing issue, update the software to resolve the issue, test the updated software and verify that it’s fixed.

RapiTime has also helped us to identify some very specific performance bottlenecks with the underlying hardware that were causing very real difficulty to identify.”

Wayne King

Engineering Fellow

Next Steps

To learn how RapiTime can help reduce the cost and effort of execution time analysis, see our product page.

To enquire about how Rapita can help, visit our contact page.

Other case studies

Case study

Collins Aerospace: DO-178C code coverage analysis

Case study

Alenia Aermacchi (Leonardo) M-346

Case study

DO-178B Level A Embraer FCS

Case study

Cobham Aerospace Connectivity: RapiCover continues to deliver on the most challenging targets

  • Solutions
    • Rapita Verification Suite
    • RapiTest
    • RapiCover
    • RapiTime
    • RapiTask
    • MACH178

    • Verification and Validation Services
    • Qualification
    • Training
    • Integration
  • Latest
  • Latest menu

    • News
    • Blog
    • Events
    • Videos
  • Downloads
  • Downloads menu

    • Brochures
    • Webinars
    • White Papers
    • Case Studies
    • Product briefs
    • Technical notes
    • Software licensing
  • Company
  • Company menu

    • About Rapita
    • Careers
    • Customers
    • Distributors
    • Industries
    • Locations
    • Partners
    • Research projects
    • Contact
  • Discover
    • Multicore Timing Analysis
    • Embedded Software Testing Tools
    • Worst Case Execution Time
    • WCET Tools
    • Code coverage for Ada, C & C++
    • MC/DC Coverage
    • Verifying additional code for DO-178C
    • Timing analysis (WCET) & Code coverage for MATLAB® Simulink®
    • Data Coupling & Control Coupling
    • Aerospace Software Testing
    • Automotive Software Testing
    • Certifying eVTOL
    • DO-178C
    • AC 20-193 and AMC 20-193
    • ISO 26262
    • What is CAST-32A?

All materials © Rapita Systems Ltd. 2025 - All rights reserved | Privacy information | Trademark notice Subscribe to our newsletter