Your browser does not support JavaScript! Skip to main content
Free 30-day trial DO-178C Handbook RapiCoupling Preview DO-178C Multicore Training Multicore Resources
Rapita Systems
 

Industry leading verification tools & services

Rapita Verification Suite (RVS)

  RapiTest - Unit/system testing  RapiCover - Structural coverage analysis  RapiTime - Timing analysis (inc. WCET)  RapiTask - Scheduling visualization  RapiCoverZero - Zero footprint coverage analysis  RapiTimeZero - Zero footprint timing analysis  RapiTaskZero - Zero footprint scheduling analysis  RapiCouplingPreview - DCCC analysis

Multicore Verification

  MACH178  MACH178 Foundations  Multicore Timing Solution  RapiDaemons

Engineering Services

  V&V Services  Data Coupling & Control Coupling  Object code verification  Qualification  Training  Consultancy  Tool Integration  Support

Industries

  Civil Aviation (DO-178C)   Military & Defense   Space   Automotive (ISO 26262)

Other

RTBx Sim68020 Mx-Suite Software licensing Product life cycle policy RVS Assurance issue policy RVS development roadmap

Latest from Rapita HQ

Latest news

Rapita partners with Asterios Technologies to deliver solutions in multicore certification
SAIF Autonomy to use RVS to verify their groundbreaking AI platform
RVS 3.22 Launched
Hybrid electric pioneers, Ascendance, join Rapita Systems Trailblazer Partnership Program
View News

Latest from the Rapita blog

How emulation can reduce avionics verification costs: Sim68020
Multicore timing analysis: to instrument or not to instrument
How to certify multicore processors - what is everyone asking?
Data Coupling Basics in DO-178C
View Blog

Latest discovery pages

Military Drone Certifying Unmanned Aircraft Systems
control_tower DO-278A Guidance: Introduction to RTCA DO-278 approval
Picture of a car ISO 26262
DCCC Image Data Coupling & Control Coupling
View Discovery pages

Upcoming events

DASC 2025
2025-09-14
DO-178C Multicore In-person Training (Fort Worth, TX)
2025-10-01
DO-178C Multicore In-person Training (Toulouse)
2025-11-04
HISC 2025
2025-11-13
View Events

Technical resources for industry professionals

Latest White papers

Mitigation of interference in multicore processors for A(M)C 20-193
Sysgo WP
Developing DO-178C and ED-12C-certifiable multicore software
DO178C Handbook
Efficient Verification Through the DO-178C Life Cycle
View White papers

Latest Videos

How to make AI safe in autonomous systems with SAIF
Rapita Systems - Safety Through Quality
Simulation for the Motorola 68020 microprocessor with Sim68020
AI-driven Requirements Traceability for Faster Testing and Certification
View Videos

Latest Case studies

GMV case study front cover
GMV verify ISO26262 automotive software with RVS
Kappa: Verifying Airborne Video Systems for Air-to-Air Refueling using RVS
Supporting DanLaw with unit testing and code coverage analysis for automotive software
View Case studies

Other Resources

 Webinars

 Brochures

 Product briefs

 Technical notes

 Research projects

 Multicore resources

Discover Rapita

Who we are

The company menu

  • About us
  • Customers
  • Distributors
  • Locations
  • Partners
  • Research projects
  • Contact us

US office

+1 248-957-9801
info@rapitasystems.com
Rapita Systems, Inc.
41131 Vincenti Ct.
Novi
MI 48375
USA

UK office

+44 (0)1904 413945
info@rapitasystems.com
Rapita Systems Ltd.
Atlas House
Osbaldwick Link Road
York, YO10 3JB
UK

Spain office

+34 93 351 02 05
info@rapitasystems.com
Rapita Systems S.L.
Parc UPC, Edificio K2M
c/ Jordi Girona, 1-3
Barcelona 08034
Spain

Working at Rapita

Careers

Careers menu

  • Current opportunities & application process
  • Working at Rapita
Back to Top Contact Us

Things that make real-time hard: DRAM refresh

Breadcrumb

  1. Home
2013-09-18

DRAM (Dynamic RAM) is the cheap, high capacity memory that is practically ubiquitous in computer systems, including external memories on embedded systems (on-chip memories are often static RAM).

DRAM works by representing the presence of data bits as charge in a capacitor. The capacitor gradually discharges over time. Therefore, to prevent data loss, it is important to refresh the data. This is normally achieved by a DRAM controller that periodically reads then writes the value of every memory location.

Because a DRAM refresh involves a memory access, it can cause jitter (variations in time) to the execution of code. This happens when the DRAM controller and the processor both attempt to access the same parts of memory at the same time. The graph below [adapted from here] shows variations in execution time due to DRAM refresh. This represents the end-to-end execution time from a test application executed (using the same data) over a number of iterations – eliminating other sources of timing variability.

Figure 1: Variations in execution time due to DRAM refresh

Timing variability caused by cache behaviour

In comparison to other causes of timing variability we have considered (parallelization, multicore, instruction caches, and pipelined architectures), DRAM refresh is a small, maybe even negligible effect (around 0.1% in the above example). However, if you need absolute accuracy in your timing measurements, DRAM refresh represents a problem.

Two approaches exist for making DRAM refresh more predictable (these are drawn from Bhat and Mueller’s paper “Making DRAM Refresh Predictable” [ http://moss.csc.ncsu.edu/~mueller/ftp/pub/mueller/papers/ecrts10.pdf ]):

  • One possibility for making DRAM refresh predictable is to perform the refresh entirely using software: the DRAM controller is turned off and a low priority, periodic task forces a refresh by reading from each DRAM row (reading the row is sufficient to force a refresh to take place). This does require the period of the task to be sufficient to keep charge in the DRAM cells.
  • Another possibility is to use a high priority, periodic interrupt controller to trigger the DRAM controller. The DRAM controller is configured to refresh the entire memory all at once. Once complete, the interrupt routine disables the DRAM controller until the next interrupt.

Either possibility eliminates jitter due to DRAM refresh from any application code and “boxes” the DRAM refresh overhead into a single periodic task/interrupt.

DO-178C webinars

DO178C webinars

White papers

Mitigation of interference in multicore processors for A(M)C 20-193
Sysgo WP Developing DO-178C and ED-12C-certifiable multicore software
DO178C Handbook Efficient Verification Through the DO-178C Life Cycle
A Commercial Solution for Safety-Critical Multicore Timing Analysis

Related blog posts

How to use the System Clock to extract timing data from a TriCore timer

.
2013-09-11

Things that make real-time hard - parallelization

.
2013-09-04

Simple P4080 Benchmarking Reveals Arbitration Bias

.
2013-07-23

PowerPC and TriCore timing variability: which is the more predictable?

.
2013-05-21

Pagination

  • First page « First
  • Previous page ‹ Previous
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Next page Next ›
  • Last page Last »
  • Solutions
    • Rapita Verification Suite
    • RapiTest
    • RapiCover
    • RapiTime
    • RapiTask
    • MACH178

    • Verification and Validation Services
    • Qualification
    • Training
    • Integration
  • Latest
  • Latest menu

    • News
    • Blog
    • Events
    • Videos
  • Downloads
  • Downloads menu

    • Brochures
    • Webinars
    • White Papers
    • Case Studies
    • Product briefs
    • Technical notes
    • Software licensing
  • Company
  • Company menu

    • About Rapita
    • Careers
    • Customers
    • Distributors
    • Industries
    • Locations
    • Partners
    • Research projects
    • Contact
  • Discover
    • Multicore Timing Analysis
    • Embedded Software Testing Tools
    • Worst Case Execution Time
    • WCET Tools
    • Code coverage for Ada, C & C++
    • MC/DC Coverage
    • Verifying additional code for DO-178C
    • Timing analysis (WCET) & Code coverage for MATLAB® Simulink®
    • Data Coupling & Control Coupling
    • Aerospace Software Testing
    • DO-178C
    • Meeting DO-178C Objectives
    • AC 20-193 and AMC 20-193
    • Meeting A(M)C 20-193 Objectives
    • Certifying eVTOL
    • Cerifying UAS

All materials © Rapita Systems Ltd. 2025 - All rights reserved | Privacy information | Trademark notice Subscribe to our newsletter