Your browser does not support JavaScript! Skip to main content
Free 30-day trial DO-178C Handbook RapiCoupling Preview DO-178C Multicore Training Multicore Resources
Rapita Systems
 

Industry leading verification tools

Rapita Verification Suite (RVS)

RapiTest - Functional testing for critical software RapiCover - Low-overhead coverage analysis for critical software RapiTime - In-depth execution time analysis for critical software RapiTask - RTOS scheduling visualization RapiCoverZero - Zero-footprint coverage analysis RapitimeZero - Zero-footprint timing analysis RapiTaskZero - Zero-footprint event-level scheduling analysis RVS Qualification Kits - Tool qualification for DO-178 B/C and ISO 26262 projects RapiCoupling - DCCC analysis

Multicore Verification

MACH178 - Multicore Avionics Certification for High-integrity DO-178C projects MACH178 Foundations - Lay the groundwork for A(M)C 20-193 compliance Multicore Timing Solution - Solving the challenges of multicore timing analysis RapiDaemon - Analyze interference in multicore systems

Other

RTBx - The ultimate data logging solution Sim68020 - Simulation for the Motorola 68020 microprocessor

RVS Software Policy

Software licensing Product life cycle policy RVS Assurance issue policy RVS development roadmap

Industry leading verification services

Engineering Services

V&V Services Data Coupling & Control Coupling Object code verification Qualification Training Consultancy Tool Integration Support

Latest from Rapita HQ

Latest news

Rapita partners with Asterios Technologies to deliver solutions in multicore certification
SAIF Autonomy to use RVS to verify their groundbreaking AI platform
RVS 3.22 Launched
Hybrid electric pioneers, Ascendance, join Rapita Systems Trailblazer Partnership Program
View News

Latest from the Rapita blog

How emulation can reduce avionics verification costs: Sim68020
Multicore timing analysis: to instrument or not to instrument
How to certify multicore processors - what is everyone asking?
Data Coupling Basics in DO-178C
View Blog

Latest discovery pages

Military Drone Certifying Unmanned Aircraft Systems
control_tower DO-278A Guidance: Introduction to RTCA DO-278 approval
Picture of a car ISO 26262
DCCC Image Data Coupling & Control Coupling
View Discovery pages

Upcoming events

IEEE SMC-IT/SCC 2025
2025-07-28
DASC 2025
2025-09-14
DO-178C Multicore In-person Training (Fort Worth, TX)
2025-10-01
DO-178C Multicore In-person Training (Toulouse)
2025-11-04
View Events

Technical resources for industry professionals

Latest White papers

Mitigation of interference in multicore processors for A(M)C 20-193
Sysgo WP
Developing DO-178C and ED-12C-certifiable multicore software
DO178C Handbook
Efficient Verification Through the DO-178C Life Cycle
View White papers

Latest Videos

How to make AI safe in autonomous systems with SAIF
Rapita Systems - Safety Through Quality
Simulation for the Motorola 68020 microprocessor with Sim68020
AI-driven Requirements Traceability for Faster Testing and Certification
View Videos

Latest Case studies

GMV case study front cover
GMV verify ISO26262 automotive software with RVS
Kappa: Verifying Airborne Video Systems for Air-to-Air Refueling using RVS
Supporting DanLaw with unit testing and code coverage analysis for automotive software
View Case studies

Other Resources

 Webinars

 Brochures

 Product briefs

 Technical notes

 Research projects

 Multicore resources

Discover Rapita

Who we are

The company menu

  • About us
  • Customers
  • Distributors
  • Locations
  • Partners
  • Research projects
  • Contact us
  • Careers
  • Working at Rapita

Industries

  Civil Aviation (DO-178C)   Automotive (ISO 26262)   Military & Defense   Space

US office

+1 248-957-9801
info@rapitasystems.com Rapita Systems, Inc., 41131 Vincenti Ct., Novi, MI 48375, USA

UK office

+44 (0)1904 413945
info@rapitasystems.com Rapita Systems Ltd., Atlas House, Osbaldwick Link Road, York, YO10 3JB, UK

Spain office

+34 93 351 02 05
info@rapitasystems.com Rapita Systems S.L., Parc UPC, Edificio K2M, c/ Jordi Girona, 1-3, Barcelona 08034, Spain
Back to Top Contact Us

Rapita Systems leads the way on Multicore research

2019-01-02

In December, Rapita Systems were pleased to welcome Dan Iorga of the Multicore Programming Group, Imperial College London, to our York offices.

Researching for his PhD, Dan's focus is on worst-case execution time analysis of multicore systems. The need to use multicore processors in the aerospace industry is growing, prompting the FAA to release the CAST-32A position paper. This is an area Rapita Systems has been researching for over 10 years, developing the first commercially-viable solution.

During his visit, Dan and our senior multicore engineer, Dr Christos Evripidou, compared their approaches to generating microbenchmarks, which create configurable degrees of contention on shared hardware resources in multicore systems, subsequently generating interference between cores. Microbenchmarks are a key component of Rapita's multicore timing analysis solution.

We conducted a short interview with Dan during his visit, the transcript of which can be found below:

Dan Iorga of the Multicore Programming Group, Imperial College London Dan Iorga of the Multicore Programming Group, Imperial College London

What are the biggest challenges of using multicore within the safety-critical domain?

Manufacturers optimize their processors for average performance. But in the safety-critical industry we are actually interested in the worst case performance. Multicore processors are especially difficult to reason about in terms of worst case behavior as they are more complex.

For example?

Let's say you are designing a car, [and] you are interested in the airbag system of that car. You want that airbag to deploy exactly when you planned it to deploy, not one microsecond later, not one microsecond earlier.

So Multicore processors are especially difficult to reason about because they are more complex and therefore have more shared resources that can cause a lot of interference.

Where do you think your multicore worst-case execution time research can be applied in the industry?

Rapita Systems' Multicore Timing Services

There are a couple of industries that are interested in real time. I can think of the aerospace industry, the automotive industry and even the medical industry.

If you have an airplane's landing gear, or the airbag of a car, or the pacemaker of a patient, you want all these devices to work without any kind of a delay.

The biggest challenge you have in multicore systems is it's difficult to determine all the subtle interactions that you have between the cores of your system.

Also, industry manufacturers might choose not to disclose all of these details in order to gain a competitive advantage.

In my research, I focus on automatically uncovering these subtle interactions in order to expose the worst-case performance, the flaws of a processor.

What is your approach to generating microbenchmarks?

My approach for evaluating worst-case execution time on multicore systems relies on automically generating microbenchmarks. These automatically generated multicore benchmarks might uncover some subtle interactions in multicore processors that a human expert might not think of, or might miss out.

Video version

Thanks for visiting, Dan!

Rapita Systems thanks Dan for his visit and looks forward to catching up with him in the future.

If you'd like to find out more about our Multicore Timing Analysis Solution, please get in touch.

  • Solutions
    • Rapita Verification Suite
    • RapiTest
    • RapiCover
    • RapiTime
    • RapiTask
    • MACH178

    • Verification and Validation Services
    • Qualification
    • Training
    • Integration
  • Latest
  • Latest menu

    • News
    • Blog
    • Events
    • Videos
  • Downloads
  • Downloads menu

    • Brochures
    • Webinars
    • White Papers
    • Case Studies
    • Product briefs
    • Technical notes
    • Software licensing
  • Company
  • Company menu

    • About Rapita
    • Careers
    • Customers
    • Distributors
    • Industries
    • Locations
    • Partners
    • Research projects
    • Contact
  • Discover
    • Multicore Timing Analysis
    • Embedded Software Testing Tools
    • Worst Case Execution Time
    • WCET Tools
    • Code coverage for Ada, C & C++
    • MC/DC Coverage
    • Verifying additional code for DO-178C
    • Timing analysis (WCET) & Code coverage for MATLAB® Simulink®
    • Data Coupling & Control Coupling
    • Aerospace Software Testing
    • DO-178C
    • Meeting DO-178C Objectives
    • AC 20-193 and AMC 20-193
    • Meeting A(M)C 20-193 Objectives
    • Certifying eVTOL
    • Cerifying UAS

All materials © Rapita Systems Ltd. 2025 - All rights reserved | Privacy information | Trademark notice Subscribe to our newsletter