Your browser does not support JavaScript! Skip to main content
Free 30-day trial DO-178C Handbook RapiCoupling Preview DO-178C Multicore Training Multicore Resources
Rapita Systems
 

Industry leading verification tools & services

Rapita Verification Suite (RVS)

  RapiTest - Unit/system testing  RapiCover - Structural coverage analysis  RapiTime - Timing analysis (inc. WCET)  RapiTask - Scheduling visualization  RapiCoverZero - Zero footprint coverage analysis  RapiTimeZero - Zero footprint timing analysis  RapiTaskZero - Zero footprint scheduling analysis  RapiCouplingPreview - DCCC analysis

Multicore Verification

  MACH178  MACH178 Foundations  Multicore Timing Solution  RapiDaemons

Engineering Services

  V&V Services  Data Coupling & Control Coupling  Object code verification  Qualification  Training  Consultancy  Tool Integration  Support

Industries

  Civil Aviation (DO-178C)   Automotive (ISO 26262)   Military & Defense   Space

Other

RTBx Mx-Suite Software licensing Product life cycle policy RVS Assurance issue policy RVS development roadmap

Latest from Rapita HQ

Latest news

SAIF Autonomy to use RVS to verify their groundbreaking AI platform
RVS 3.22 Launched
Hybrid electric pioneers, Ascendance, join Rapita Systems Trailblazer Partnership Program
Magline joins Rapita Trailblazer Partnership Program to support DO-178 Certification
View News

Latest from the Rapita blog

How to certify multicore processors - what is everyone asking?
Data Coupling Basics in DO-178C
Control Coupling Basics in DO-178C
Components in Data Coupling and Control Coupling
View Blog

Latest discovery pages

control_tower DO-278A Guidance: Introduction to RTCA DO-278 approval
Picture of a car ISO 26262
DCCC Image Data Coupling & Control Coupling
Additional Coe verification thumb Verifying additional code for DO-178C
View Discovery pages

Upcoming events

Avionics and Testing Innovations 2025
2025-05-20
DASC 2025
2025-09-14
DO-178C Multicore In-person Training (Fort Worth, TX)
2025-10-01
DO-178C Multicore In-person Training (Toulouse)
2025-11-04
View Events

Technical resources for industry professionals

Latest White papers

Mitigation of interference in multicore processors for A(M)C 20-193
Sysgo WP
Developing DO-178C and ED-12C-certifiable multicore software
DO178C Handbook
Efficient Verification Through the DO-178C Life Cycle
View White papers

Latest Videos

Rapita Systems - Safety Through Quality
Simulation for the Motorola 68020 microprocessor with Sim68020
AI-driven Requirements Traceability for Faster Testing and Certification
Multicore software verification with RVS 3.22
View Videos

Latest Case studies

GMV case study front cover
GMV verify ISO26262 automotive software with RVS
Kappa: Verifying Airborne Video Systems for Air-to-Air Refueling using RVS
Supporting DanLaw with unit testing and code coverage analysis for automotive software
View Case studies

Other Resources

 Webinars

 Brochures

 Product briefs

 Technical notes

 Research projects

 Multicore resources

Discover Rapita

Who we are

The company menu

  • About us
  • Customers
  • Distributors
  • Locations
  • Partners
  • Research projects
  • Contact us

US office

+1 248-957-9801
info@rapitasystems.com
Rapita Systems, Inc.
41131 Vincenti Ct.
Novi
MI 48375
USA

UK office

+44 (0)1904 413945
info@rapitasystems.com
Rapita Systems Ltd.
Atlas House
Osbaldwick Link Road
York, YO10 3JB
UK

Spain office

+34 93 351 02 05
info@rapitasystems.com
Rapita Systems S.L.
Parc UPC, Edificio K2M
c/ Jordi Girona, 1-3
Barcelona 08034
Spain

Working at Rapita

Careers

Careers menu

  • Current opportunities & application process
  • Working at Rapita
Back to Top Contact Us

Evolving language support in RVS: Libadalang

Breadcrumb

  1. Home
Charles Forsyth
2020-04-09

The efficiency of our tools is an important way in which we can offer our customers savings in terms of time and money. We are constantly refining our tools to improve this efficiency, which has recently included the adoption of new Ada language processing technology. The incorporation of libadalang will allow quicker support of new language features and speed up the analysis of customer code, especially for larger projects.

Background: Parsing in RVS

Rapita Verification Suite (RVS) contains a range of products to help customers analyze and test critical software, providing tools for instrumentation of timing and coverage, tracing, test generation and static analysis. These tools share a preparation database that contains an abstract representation of all the source code for a given customer project. Currently Rapita supports Ada, C, C++ and several assembly languages. A language-specific parser reads a source file and puts a representation of the code in the database. The structure is shown below.

Language parsers

Once the project is in the database, separate analysis tools can be run as needed, including interactive ones that allow you to guide the activity. This structure allows parsers and tools to be added or extended without disrupting anything else. In the rest of this article, we consider the process of safely changing an existing parser. We shall describe how and why Rapita changed the parser for C and C++, without disrupting customers’ work, and how it will do the same for Ada.

The evolution of programming languages

C and C++ support was originally provided by separate ad-hoc parsers. Programming languages are periodically revised, introducing new language rules and constructions, which customers wish to use (often to support third-party libraries). The ad-hoc parsers became hard to extend and maintain to track those changes. Two years ago, Rapita developed a replacement parser based on a production C and C++ compiler that would support those languages as they stood, and as they continued to evolve.

That new support for C and C++ was introduced carefully. First, it had to pass the same extensive suite of end-to-end tests as the existing parsers. Next, the old and new components were provided side-by-side, with the old ones used by default. The new one could, however, be selected explicitly, allowing its use for new integrations, but with a fallback available to the old components if necessary. Eventually, existing integrations also used the new component, and the old was deprecated. Finally, the old one was discarded. The Rapita tools continued to take their input from the database and could remain unchanged.

In a similar way to C and C++, Ada too has evolved: Ada 83, 95, 2005, 2012 and soon 2020. Unlike the ad-hoc parsers originally used for C and C++, Rapita’s Ada processing uses the GNAT Ada compiler, which does track language changes. As part of the process, however, GNAT produces an elaborate intermediate form (ASIS) that has begun to creak with age. A separate Rapita program converts ASIS into database entries. Adding support for more language features has not always been straightforward, and the two-stage process is relatively slow and inefficient since the extra intermediate form must be written out by GNAT and read back in by the conversion program.

Harnessing the power of libadalang

GNAT Compiler

AdaCore, GNAT’s author, has developed a new library libadalang specifically written to make it easier to build tools to work with Ada programs, for example better IDEs. Rapita is using libadalang to build a replacement for the GNAT-based Ada processing in the pipeline shown above. From a customer’s perspective, this will allow quicker support of new language features. Avoiding significant IO between two separate programs reduces the clock time taken to produce the preparation database, speeding up the analysis of customer code, especially for larger projects. Finally, the process for introducing the new component will mimic the one described above, successfully used for C and C++, to ensure a smooth transition.

DO-178C webinars

DO178C webinars

White papers

Mitigation of interference in multicore processors for A(M)C 20-193
Sysgo WP Developing DO-178C and ED-12C-certifiable multicore software
DO178C Handbook Efficient Verification Through the DO-178C Life Cycle
A Commercial Solution for Safety-Critical Multicore Timing Analysis

Related blog posts

Test your Ada skills with our puzzle

.
2019-06-18

Highlights from Ada-Europe 2018

.
2018-07-03

Highlights from Ada Europe 2016

.
2016-07-06

Ada enumerations are sometimes functions

.
2016-04-18

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Next page Next ›
  • Last page Last »
  • Solutions
    • Rapita Verification Suite
    • RapiTest
    • RapiCover
    • RapiTime
    • RapiTask
    • MACH178

    • Verification and Validation Services
    • Qualification
    • Training
    • Integration
  • Latest
  • Latest menu

    • News
    • Blog
    • Events
    • Videos
  • Downloads
  • Downloads menu

    • Brochures
    • Webinars
    • White Papers
    • Case Studies
    • Product briefs
    • Technical notes
    • Software licensing
  • Company
  • Company menu

    • About Rapita
    • Careers
    • Customers
    • Distributors
    • Industries
    • Locations
    • Partners
    • Research projects
    • Contact
  • Discover
    • Multicore Timing Analysis
    • Embedded Software Testing Tools
    • Worst Case Execution Time
    • WCET Tools
    • Code coverage for Ada, C & C++
    • MC/DC Coverage
    • Verifying additional code for DO-178C
    • Timing analysis (WCET) & Code coverage for MATLAB® Simulink®
    • Data Coupling & Control Coupling
    • Aerospace Software Testing
    • Automotive Software Testing
    • Certifying eVTOL
    • DO-178C
    • AC 20-193 and AMC 20-193
    • ISO 26262
    • What is CAST-32A?

All materials © Rapita Systems Ltd. 2025 - All rights reserved | Privacy information | Trademark notice Subscribe to our newsletter