Your browser does not support JavaScript! Skip to main content
Free 30-day trial Customer portal Contact
 
Rapita Systems
 

Industry leading verification tools & services

Rapita Verification Suite (RVS)

  RapiTest - Unit/system testing   RapiCover - Structural coverage analysis   RapiTime - Timing analysis (inc. WCET)   RapiTask - Scheduling visualization   RapiCoverZero - Zero footprint coverage analysis   RapiTimeZero - Zero footprint timing analysis   RapiTaskZero - Zero footprint scheduling analysis

Multicore verification

  CAST-32A Compliance   Multicore Timing Solution   RapiDaemons

Services

  V & V Services   Qualification   Training   Tool Integration

Industries

  Aerospace (DO-178C)   Automotive (ISO 26262)   Space

Other

  RTBx   Mx-Suite   Software licensing   Product life cycle policy

Latest from Rapita HQ

Latest news

Propelling the next generation of scientists
DO-178C Virtual Training - November 2020
NXP MCFA 2020

Latest from the Rapita blog

Leveraging FACE Conformance Artifacts to Support Airworthiness
Assured Multicore Partitioning for FACE Systems
Going above and beyond the quality standards

Upcoming events

Safe Use of Multi-Core Processors Seminar
2021-04-05

Technical resources for industry professionals

Latest White Papers

Multicore Timing Analysis for DO-178C
Seven Roadblocks to 100% Structural Coverage (and how to avoid them)
Eight top code coverage questions in embedded avionics systems

Latest Videos

MASTECS Project
Testing using the RapiTest scripting language thumbnail
Testing using the RapiTest scripting language
Continuous verification with RVS and Jenkins Thumbnail
Continuous verification with RVS and Jenkins
Zero footprint timing analysis with RapiTime Zero Thumbnail
Zero footprint timing analysis with RapiTime Zero
RapiTask Zero Thumbnail
Zero-footprint system event tracing with RapiTask Zero

Latest Webinars

Incremental Assurance of Multicore Integrated Modular Avionics (IMA)
Certifying multicore systems for DO-178C (CAST-32A) projects
Airborne Safety with FACE™ in the Digital Battlespace

Latest Case studies

Cobham Aerospace Connectivity: RapiCover continues to deliver on the most challenging targets
DO-178B Level A Embraer FCS
Validation of COTS Ada Compiler for Safety-Critical Applications

Discover Rapita

Who we are

The company menu

  • About us
  • Customers
  • Distributors
  • Locations
  • Partners
  • Research projects
  • Contact us

Careers

Careers menu

  • Current opportunities & application process
  • Working at Rapita

US office

+1 248-957-9801
info@rapitasystems.com
41131 Vincenti Ct.
Novi, MI, 48375
USA

UK office

+44 (0)1904 413945
enquiries@rapitasystems.com
Atlas House
York, YO10 3JB
UK

Back to Top

1000 conditions per decision ought to be enough for anybody

Breadcrumb

  1. Home
  2. Blog
  3. 1000 conditions per decision ought to be enough for anybody
Dr Antoine Colin
2019-01-28

Modified condition/decision coverage (MC/DC) testing requires testing, among other things, that each condition in a decision takes every possible outcome, and independently affects the outcome of the decision.

Coverage analysis tools test for MC/DC by observing results when the value of each condition is changed independently from the other conditions in the decision (though, with some clever logic, masking MC/DC can reduce overheads in some cases).

Most coverage analysis tools support what they deem to be a "reasonable" number of conditions per decision (our customers report that limits of 17 to 20 conditions per decision are common). But what if one of your decisions exceeds this arbitrary limit? You could:

  • Change your code (but why should you?)
  • Perform MC/DC analysis by hand (how many conditions? 50? good luck!)

RapiCover, however, is not like most coverage analysis tools - supporting up to 1000 conditions per decision in RVS 3.8.

Q&A:

Why do you support so many conditions per decision?
Because we can, and because your code may include giant decisions (we aren't judging).

Surely, nobody would write a decision that big, right?
While you're unlikely to write something like this by hand, if you're using model driven development (MDD), your automatically generated code may include decisions with a large number of conditions (for example code for aggregating large numbers of boolean signals).

Why only 1000 conditions?
We can support more than 1000 if you really need it! (but we'd be curious to see the code that requires this).

What does a RapiCover report with such large decisions look like?
I'm glad you asked. See Figure 1 below. Note that you can scroll to view the full file in the source code view.

 
 
 

   

Figure 1. RapiCover report from a decision with almost 1000 conditions

The example in Figure 1 shows a function that aggregates hundreds of boolean signals (just short of 1000 ) into a "warning light" signal. This is a bit like the piece of software that lights up the engine light on your dashboard. There are many error signals that can cause this light to come on and they can be all listed in a large or  boolean expression making a very large MC/DC decision.

The example report above shows the RapiCover MC/DC view with the coverage status of close to 1000 conditions in both the table view and the colorized source code view.

In the source code view, you can see a few coverage holes. For example, while various subsystems are missing a few tests to cover all their signals, the Turbolift subsystem has not been tested at all, and all of the GravityGenerator signals have been addressed using justifications rather than tested.

As a final note, it is interesting to see that Ada is still a popular choice for Aerospace software development in the 23rd century - as shown by this example.

White papers

  • Solutions
    • Rapita Verification Suite
    • RapiTest
    • RapiCover
    • RapiTime
    • RapiTask

    • CAST-32A Compliance Package
    • Verification and Validation Services
    • Qualification
    • Training
    • Integration
  • Latest
  • Latest menu

    • News
    • Blog
    • Events
    • Videos
  • Downloads
  • Downloads menu

    • Brochures
    • Webinars
    • White Papers
    • Case Studies
    • Product briefs
    • Technical notes
    • Software licensing
  • Company
  • Company menu

    • About Rapita
    • Customers
    • Distributors
    • Industries
    • Locations
    • Partners
    • Research projects
    • Contact
  • Discover
    • AMC 20-193
    • What is CAST-32A?
    • Multicore Timing Analysis

    • MC/DC Coverage
    • Code coverage for Ada, C & C++
    • Embedded Software Testing Tools
    • Aerospace Software Testing
    • Automotive Software Testing
    • Certifying eVTOL
    • DO-178C Testing

    • WCET Tools
    • Worst Case Execution Time

All materials © Rapita Systems Ltd. 2021 - All rights reserved | Privacy information Subscribe to our newsletter