Your browser does not support JavaScript! Skip to main content
Free 30-day trial DO-178C Handbook RapiCoupling Preview DO-178C Multicore Training Multicore Resources
Rapita Systems
 

Industry leading verification tools & services

Rapita Verification Suite (RVS)

  RapiTest - Unit/system testing  RapiCover - Structural coverage analysis  RapiTime - Timing analysis (inc. WCET)  RapiTask - Scheduling visualization  RapiCoverZero - Zero footprint coverage analysis  RapiTimeZero - Zero footprint timing analysis  RapiTaskZero - Zero footprint scheduling analysis  RapiCouplingPreview - DCCC analysis

Multicore Verification

  MACH178  MACH178 Foundations  Multicore Timing Solution  RapiDaemons

Engineering Services

  V&V Services  Data Coupling & Control Coupling  Object code verification  Qualification  Training  Consultancy  Tool Integration  Support

Industries

  Civil Aviation (DO-178C)   Automotive (ISO 26262)   Military & Defense   Space

Other

RTBx Mx-Suite Software licensing Product life cycle policy RVS Assurance issue policy RVS development roadmap

Latest from Rapita HQ

Latest news

SAIF Autonomy to use RVS to verify their groundbreaking AI platform
RVS 3.22 Launched
Hybrid electric pioneers, Ascendance, join Rapita Systems Trailblazer Partnership Program
Magline joins Rapita Trailblazer Partnership Program to support DO-178 Certification
View News

Latest from the Rapita blog

How to certify multicore processors - what is everyone asking?
Data Coupling Basics in DO-178C
Control Coupling Basics in DO-178C
Components in Data Coupling and Control Coupling
View Blog

Latest discovery pages

control_tower DO-278A Guidance: Introduction to RTCA DO-278 approval
Picture of a car ISO 26262
DCCC Image Data Coupling & Control Coupling
Additional Coe verification thumb Verifying additional code for DO-178C
View Discovery pages

Upcoming events

Avionics and Testing Innovations 2025
2025-05-20
DASC 2025
2025-09-14
DO-178C Multicore In-person Training (Fort Worth, TX)
2025-10-01
DO-178C Multicore In-person Training (Toulouse)
2025-11-04
View Events

Technical resources for industry professionals

Latest White papers

Mitigation of interference in multicore processors for A(M)C 20-193
Sysgo WP
Developing DO-178C and ED-12C-certifiable multicore software
DO178C Handbook
Efficient Verification Through the DO-178C Life Cycle
View White papers

Latest Videos

Rapita Systems - Safety Through Quality
Simulation for the Motorola 68020 microprocessor with Sim68020
AI-driven Requirements Traceability for Faster Testing and Certification
Multicore software verification with RVS 3.22
View Videos

Latest Case studies

GMV case study front cover
GMV verify ISO26262 automotive software with RVS
Kappa: Verifying Airborne Video Systems for Air-to-Air Refueling using RVS
Supporting DanLaw with unit testing and code coverage analysis for automotive software
View Case studies

Other Resources

 Webinars

 Brochures

 Product briefs

 Technical notes

 Research projects

 Multicore resources

Discover Rapita

Who we are

The company menu

  • About us
  • Customers
  • Distributors
  • Locations
  • Partners
  • Research projects
  • Contact us

US office

+1 248-957-9801
info@rapitasystems.com
Rapita Systems, Inc.
41131 Vincenti Ct.
Novi
MI 48375
USA

UK office

+44 (0)1904 413945
info@rapitasystems.com
Rapita Systems Ltd.
Atlas House
Osbaldwick Link Road
York, YO10 3JB
UK

Spain office

+34 93 351 02 05
info@rapitasystems.com
Rapita Systems S.L.
Parc UPC, Edificio K2M
c/ Jordi Girona, 1-3
Barcelona 08034
Spain

Working at Rapita

Careers

Careers menu

  • Current opportunities & application process
  • Working at Rapita
Back to Top Contact Us

Does DO-178C require object code structural coverage?

Breadcrumb

  1. Home
2014-11-21

If you are developing software to Level A for DO-178B/C, your code has to undergo extremely rigorous structural coverage analysis for the purposes of certification. This includes examining both source and object code.

Code coverage testing aims to ensure that all of your source code can be traced back to requirements. You can achieve this by running your tests (which should be derived from requirements), and showing that you have achieved complete code coverage. For DAL A DO-178B/C projects, this is slightly complicated by an additional requirement: the need to identify and test any object code that may have been generated by the compiler and isn’t directly traceable to the source code.

The wording of DO-178B for Level A structural coverage testing can lead to the impression that the best way to both comply with the standard and get adequate coverage results is to perform your structural coverage analysis directly on the object code. However, DO-178C and the CAST-12 paper [1] on the subject makes it clear that this is a misconception: object code analysis is not a simple replacement for source code coverage analysis.

In fact, neither structural analysis at the source or object code level will, on their own, provide you with a full solution for Level A. You will always need some analysis at both source and object code levels. However, you can choose to perform structural coverage testing on either source or object code. It is important to be aware that the choice you make leads to different additional material being needed to make a certification case. We’ve summarized these below:

  1. When performing coverage testing on source code, up to and including MC/DC, you will need to analyze any object code that cannot be traced to the source (e.g. processor specific instructions inserted by the compiler). Analysis of the source code has the advantage of clear visibility of the source code coverage with faster results, that can be run and rerun earlier in the design process, but a safety case for the use of source code instrumentation is needed. If data to make this case can be supplied by the coverage analysis tool provider, this can reduce the cost of making such a case significantly.
  2. When performing coverage testing on the compiled object code, you will need to analyze the mappings from the object code to source code decisions and show that the test suite exercises all the original source code. This is necessary, as although full object code coverage may have been achieved, if the compiler has optimized the original source, this may not ensure that all source code has a related test case (see the simplified diagram below). If a mapping from the object code to source code can’t be provided, you will need to perform additional MC/DC testing.

object to source code mappingIn summary, the certification criteria for Level A code coverage testing can be met by either source code or object code analysis, with source code coverage analysis offering advantages as it supports faster analysis and easier traceability between source code and results. Using either type of analysis, a certification case must be made by providing evidence to support the analysis. For source code analysis, you may be able to obtain some of this evidence from the tool provider, potentially reducing the cost of certification.

Looking to verify your DO-178C code to meet objectives relating to structural coverage analysis and additional code introduced by your compiler? Rapita Systems can help by providing automated verification tools for structural coverage analysis of both source code (RapiCover) and object code (RapiCoverZero), and by providing a Compiler Verification service.

[1] Position Paper CAST-12: Guidelines for Approving Source Code to Object Code Traceability 2002 (no longer available publicly).

Further reading: You may also be interested in Discover Verifying additional code for DO-178C

DO-178C webinars

DO178C webinars

White papers

Mitigation of interference in multicore processors for A(M)C 20-193
Sysgo WP Developing DO-178C and ED-12C-certifiable multicore software
DO178C Handbook Efficient Verification Through the DO-178C Life Cycle
A Commercial Solution for Safety-Critical Multicore Timing Analysis

Related blog posts

False positive and false negative in software testing

.
2019-05-22

1000 conditions per decision ought to be enough for anybody

.
2019-01-28

Code coverage without instrumentation

.
2018-10-18

Merging coverage data from multiple test runs

.
2017-01-31

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Next page Next ›
  • Last page Last »
  • Solutions
    • Rapita Verification Suite
    • RapiTest
    • RapiCover
    • RapiTime
    • RapiTask
    • MACH178

    • Verification and Validation Services
    • Qualification
    • Training
    • Integration
  • Latest
  • Latest menu

    • News
    • Blog
    • Events
    • Videos
  • Downloads
  • Downloads menu

    • Brochures
    • Webinars
    • White Papers
    • Case Studies
    • Product briefs
    • Technical notes
    • Software licensing
  • Company
  • Company menu

    • About Rapita
    • Careers
    • Customers
    • Distributors
    • Industries
    • Locations
    • Partners
    • Research projects
    • Contact
  • Discover
    • Multicore Timing Analysis
    • Embedded Software Testing Tools
    • Worst Case Execution Time
    • WCET Tools
    • Code coverage for Ada, C & C++
    • MC/DC Coverage
    • Verifying additional code for DO-178C
    • Timing analysis (WCET) & Code coverage for MATLAB® Simulink®
    • Data Coupling & Control Coupling
    • Aerospace Software Testing
    • Automotive Software Testing
    • Certifying eVTOL
    • DO-178C
    • AC 20-193 and AMC 20-193
    • ISO 26262
    • What is CAST-32A?

All materials © Rapita Systems Ltd. 2025 - All rights reserved | Privacy information | Trademark notice Subscribe to our newsletter