Your browser does not support JavaScript! Skip to main content
Free 30-day trial DO-178C Handbook RapiCoupling Preview DO-178C Multicore Training Multicore Resources
Rapita Systems
 

Industry leading verification tools & services

Rapita Verification Suite (RVS)

  RapiTest - Unit/system testing  RapiCover - Structural coverage analysis  RapiTime - Timing analysis (inc. WCET)  RapiTask - Scheduling visualization  RapiCoverZero - Zero footprint coverage analysis  RapiTimeZero - Zero footprint timing analysis  RapiTaskZero - Zero footprint scheduling analysis  RapiCouplingPreview - DCCC analysis

Multicore Verification

  MACH178  MACH178 Foundations  Multicore Timing Solution  RapiDaemons

Engineering Services

  V&V Services  Data Coupling & Control Coupling  Object code verification  Qualification  Training  Consultancy  Tool Integration  Support

Industries

  Civil Aviation (DO-178C)   Automotive (ISO 26262)   Military & Defense   Space

Other

RTBx Mx-Suite Software licensing Product life cycle policy RVS Assurance issue policy RVS development roadmap

Latest from Rapita HQ

Latest news

SAIF Autonomy to use RVS to verify their groundbreaking AI platform
RVS 3.22 Launched
Hybrid electric pioneers, Ascendance, join Rapita Systems Trailblazer Partnership Program
Magline joins Rapita Trailblazer Partnership Program to support DO-178 Certification
View News

Latest from the Rapita blog

How to certify multicore processors - what is everyone asking?
Data Coupling Basics in DO-178C
Control Coupling Basics in DO-178C
Components in Data Coupling and Control Coupling
View Blog

Latest discovery pages

control_tower DO-278A Guidance: Introduction to RTCA DO-278 approval
Picture of a car ISO 26262
DCCC Image Data Coupling & Control Coupling
Additional Coe verification thumb Verifying additional code for DO-178C
View Discovery pages

Upcoming events

DASC 2025
2025-09-14
DO-178C Multicore In-person Training (Fort Worth, TX)
2025-10-01
DO-178C Multicore In-person Training (Toulouse)
2025-11-04
HISC 2025
2025-11-13
View Events

Technical resources for industry professionals

Latest White papers

Mitigation of interference in multicore processors for A(M)C 20-193
Sysgo WP
Developing DO-178C and ED-12C-certifiable multicore software
DO178C Handbook
Efficient Verification Through the DO-178C Life Cycle
View White papers

Latest Videos

Rapita Systems - Safety Through Quality
Simulation for the Motorola 68020 microprocessor with Sim68020
AI-driven Requirements Traceability for Faster Testing and Certification
Multicore software verification with RVS 3.22
View Videos

Latest Case studies

GMV case study front cover
GMV verify ISO26262 automotive software with RVS
Kappa: Verifying Airborne Video Systems for Air-to-Air Refueling using RVS
Supporting DanLaw with unit testing and code coverage analysis for automotive software
View Case studies

Other Resources

 Webinars

 Brochures

 Product briefs

 Technical notes

 Research projects

 Multicore resources

Discover Rapita

Who we are

The company menu

  • About us
  • Customers
  • Distributors
  • Locations
  • Partners
  • Research projects
  • Contact us

US office

+1 248-957-9801
info@rapitasystems.com
Rapita Systems, Inc.
41131 Vincenti Ct.
Novi
MI 48375
USA

UK office

+44 (0)1904 413945
info@rapitasystems.com
Rapita Systems Ltd.
Atlas House
Osbaldwick Link Road
York, YO10 3JB
UK

Spain office

+34 93 351 02 05
info@rapitasystems.com
Rapita Systems S.L.
Parc UPC, Edificio K2M
c/ Jordi Girona, 1-3
Barcelona 08034
Spain

Working at Rapita

Careers

Careers menu

  • Current opportunities & application process
  • Working at Rapita
Back to Top Contact Us

Masking MC/DC? What's all that about then?

Breadcrumb

  1. Home
2012-10-13

If you're involved in developing and verifying high integrity software (especially if DO-178B is involved), you have probably come across the use of MC/DC (modified condition/decision coverage) for helping to demonstrate that tests are thorough enough.

Sometimes, the use of masking MC/DC is also discussed. In this blog post, I briefly describe how masking MC/DC is different from "regular" (unique cause) MC/DC.

Before I talk about what masking MC/DC is, let's briefly recap what MC/DC is. In a complex decision (for example, the expression within an if-statement), you have to run enough tests to demonstrate that each individual condition can independently affect the outcome. (We also discuss this in more detail in a previous blog post). This means that for an if statement:

If (A and B) or (C and D) then
    X;
else
    Y;

You need to run pairs of tests where:

  • B, C, D remain constant. By varying A you get two different outcomes (X or Y)
  • A, C, D remain constant. By varying B you get two different outcomes
  • A, B, D remain constant. By varying C you get two different outcomes
  • A, B, C remain constant. By varying D you get two different outcomes

Each of these pairs of tests is termed an independence pair.

This suggests that we need four pairs of tests. However, if you’re smart about it, you can combine one member of an independence pair with another member of an independence pair. If you manage to do this at the best level possible, the testing can be done with five tests (in general N+1 tests for N conditions).

This relies on all of the conditions being independent. This approach is termed unique-cause MC/DC.

So what happens if conditions aren’t independent? This is where masking MC/DC comes in. Masking refers to the approach where specific conditions can mask the effects of other conditions.

The masking approach to MC/DC allows more than one condition to change in an independence pair, as long as the condition of interest is shown to be the only condition that affects the value of the decision outcome.

Using the above example, to show that A can independently affect the outcome of the decision, test cases require that B is true and (C and D) is false, so:

  • If A is true, the outcome is true
  • If A is false, the outcome is false

Provided that in both test cases (i.e where A is false and where A is true), the subexpression (C and D) is false, masking MC/DC allows the values of C and D to vary, so for example the following test vectors would be acceptable:

A B C D Outcome
True True False True True
False True True False False


One common example where masking might occur is where a condition is repeated within an expression, for example:

If (A and B) or (A and D)

More information on masking MC/DC is available in this FAA paper. You might also be interested in our white paper on Eight code coverage questions in embedded avionic systems.

DO-178C webinars

DO178C webinars

White papers

Mitigation of interference in multicore processors for A(M)C 20-193
Sysgo WP Developing DO-178C and ED-12C-certifiable multicore software
DO178C Handbook Efficient Verification Through the DO-178C Life Cycle
A Commercial Solution for Safety-Critical Multicore Timing Analysis

Related blog posts

1000 conditions per decision ought to be enough for anybody

.
2019-01-28

CAST-10 "Literal" Interpretation of Decision Coverage Increases Rigor of Testing Requirements

.
2015-03-25

Philippa explains: "What is MC/DC?"

.
2015-02-17

Does DO-178C require object code structural coverage?

.
2014-11-21

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Next page Next ›
  • Last page Last »
  • Solutions
    • Rapita Verification Suite
    • RapiTest
    • RapiCover
    • RapiTime
    • RapiTask
    • MACH178

    • Verification and Validation Services
    • Qualification
    • Training
    • Integration
  • Latest
  • Latest menu

    • News
    • Blog
    • Events
    • Videos
  • Downloads
  • Downloads menu

    • Brochures
    • Webinars
    • White Papers
    • Case Studies
    • Product briefs
    • Technical notes
    • Software licensing
  • Company
  • Company menu

    • About Rapita
    • Careers
    • Customers
    • Distributors
    • Industries
    • Locations
    • Partners
    • Research projects
    • Contact
  • Discover
    • Multicore Timing Analysis
    • Embedded Software Testing Tools
    • Worst Case Execution Time
    • WCET Tools
    • Code coverage for Ada, C & C++
    • MC/DC Coverage
    • Verifying additional code for DO-178C
    • Timing analysis (WCET) & Code coverage for MATLAB® Simulink®
    • Data Coupling & Control Coupling
    • Aerospace Software Testing
    • Automotive Software Testing
    • Certifying eVTOL
    • DO-178C
    • AC 20-193 and AMC 20-193
    • ISO 26262
    • What is CAST-32A?

All materials © Rapita Systems Ltd. 2025 - All rights reserved | Privacy information | Trademark notice Subscribe to our newsletter